Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
CAS
PubMed
Google Scholar
Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM, Miller DM, et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. 2015;125(2):687–98. https://doi.org/10.1172/JCI72873.
Article
PubMed
PubMed Central
Google Scholar
Ma MZ, Zhang Y, Weng MZ, Wang SH, Hu Y, Hou ZY, et al. Long noncoding RNA GCASPC, a target of miR-17-3p, negatively regulates pyruvate carboxylase-dependent cell proliferation in gallbladder cancer. Cancer Res. 2016;76(18):5361–71. https://doi.org/10.1158/0008-5472.CAN-15-3047.
Article
CAS
PubMed
Google Scholar
Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 2016;23(3):517–28. https://doi.org/10.1016/j.cmet.2016.01.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phannasil P, Thuwajit C, Warnnissorn M, Wallace JC, MacDonald MJ, Jitrapakdee S. Pyruvate carboxylase is up-regulated in breast cancer and essential to support growth and invasion of MDA-MB-231 cells. PLoS One. 2015;10(6):e0129848. https://doi.org/10.1371/journal.pone.0129848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 2009;8(1):41. https://doi.org/10.1186/1476-4598-8-41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, et al. Reprogramming of energy metabolism: increased expression and roles of pyruvate carboxylase in papillary thyroid cancer. Thyroid. 2019;29(6):845–57. https://doi.org/10.1089/thy.2018.0435.
Article
CAS
PubMed
Google Scholar
Wilmanski T, Buhman K, Donkin SS, Burgess JR, Teegarden D. 1α,25-Dihydroxyvitamin D inhibits de novo fatty acid synthesis and lipid accumulation in metastatic breast cancer cells through down-regulation of pyruvate carboxylase. J Nutr Biochem. 2017;40:194–200. https://doi.org/10.1016/j.jnutbio.2016.11.006.
Article
CAS
PubMed
Google Scholar
Wilmanski T, Zhou X, Zheng W, Shinde A, Donkin SS, Wendt M, et al. Inhibition of pyruvate carboxylase by 1α,25-dihydroxyvitamin D promotes oxidative stress in early breast cancer progression. Cancer Lett. 2017;411:171–81. https://doi.org/10.1016/j.canlet.2017.09.045.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. https://doi.org/10.1016/j.cmet.2007.10.002.
Article
CAS
PubMed
Google Scholar
McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic fitness and plasticity in cancer progression. Trends Cancer. 2020;6(1):49–61. https://doi.org/10.1016/j.trecan.2019.11.009.
Article
CAS
PubMed
Google Scholar
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12. https://doi.org/10.1074/jbc.R200006200.
Article
CAS
PubMed
Google Scholar
DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24. https://doi.org/10.1038/onc.2009.358.
Article
CAS
PubMed
Google Scholar
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jitrapakdee S, Vidal-Puig A, Wallace J. Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cell Mol Life Sci. 2006;63(7-8):843–54. https://doi.org/10.1007/s00018-005-5410-y.
Article
CAS
PubMed
Google Scholar
Agca C, Bidwell CA, Donkin SS. Cloning of bovine pyruvate carboxylase and 5′ untranslated region variants. Anim Biotechnol. 2004;15(1):47–66. https://doi.org/10.1081/ABIO-120037897.
Article
CAS
PubMed
Google Scholar
Jitrapakdee S, St MM, Rayment I, Cleland WW, Wallace JC, Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. 2008;413(3):369–87. https://doi.org/10.1042/BJ20080709.
Article
CAS
PubMed
Google Scholar
Wang D, Yang H, De Braganca KC, Lu J, Yu SL, Briones P, et al. The molecular basis of pyruvate carboxylase deficiency: mosaicism correlates with prolonged survival. Mol Genet Metab. 2008;95(1-2):31–8. https://doi.org/10.1016/j.ymgme.2008.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jitrapakdee S, Wallace JC. Structure, function and regulation of pyruvate carboxylase. Biochem J. 1999;340(Pt 1):1–16. https://doi.org/10.1042/bj3400001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Xia WL, Brew K, Ahmad F. Adipose pyruvate carboxylase: amino acid sequence and domain structure deduced from cDNA sequencing. Proc Natl Acad Sci U S A. 1993;90(5):1766–70. https://doi.org/10.1073/pnas.90.5.1766.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thonpho A, Rojvirat P, Jitrapakdee S, MacDonald MJ. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells. PLoS One. 2013;8(1):e55139. https://doi.org/10.1371/journal.pone.0055139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thonpho A, Sereeruk C, Rojvirat P, Jitrapakdee S. Identification of the cyclic AMP responsive element (CRE) that mediates transcriptional regulation of the pyruvate carboxylase gene in HepG2 cells. Biochem Biophys Res Commun. 2010;393(4):714–9. https://doi.org/10.1016/j.bbrc.2010.02.067.
Article
CAS
PubMed
Google Scholar
Reshef L, Hanson RW, Ballard FJ. Glyceride-glycerol synthesis from pyruvate. Adaptive changes in phosphoenolpyruvate carboxykinase and pyruvate carboxylase in adipose tissue and liver. J Biol Chem. 1969;244(8):1994–2001. https://doi.org/10.1016/S0021-9258(18)94358-9.
Article
CAS
PubMed
Google Scholar
Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119(7):1041–54. https://doi.org/10.1016/j.cell.2004.10.032.
Article
CAS
PubMed
Google Scholar
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):179–83. https://doi.org/10.1038/35093131.
Article
CAS
PubMed
Google Scholar
White HM, Koser SL, Donkin SS. Differential regulation of bovine pyruvate carboxylase promoters by fatty acids and peroxisome proliferator-activated receptor-alpha agonist. J Dairy Sci. 2011;94(7):3428–36. https://doi.org/10.3168/jds.2010-3960.
Article
CAS
PubMed
Google Scholar
Weld KA, Erb SJ, White HM. Short communication: effect of manipulating fatty acid profile on gluconeogenic gene expression in bovine primary hepatocytes. J Dairy Sci. 2019;102(8):7576–82. https://doi.org/10.3168/jds.2018-16150.
Article
CAS
PubMed
Google Scholar
Zhang Q, Koser SL, Donkin SS. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. J Dairy Sci. 2016;99(5):3908–15. https://doi.org/10.3168/jds.2015-10312.
Article
CAS
PubMed
Google Scholar
White HM, Koser SL, Donkin SS. Characterization of bovine pyruvate carboxylase promoter 1 responsiveness to serum from control and feed-restricted cows. J Anim Sci. 2011;89(6):1763–8. https://doi.org/10.2527/jas.2010-3407.
Article
CAS
PubMed
Google Scholar
White HM, Koser SL, Donkin SS. Gluconeogenic enzymes are differentially regulated by fatty acid cocktails in Madin-Darby bovine kidney cells. J Dairy Sci. 2012;95(3):1249–56. https://doi.org/10.3168/jds.2011-4644.
Article
CAS
PubMed
Google Scholar
Velez JC, Donkin SS. Feed restriction induces pyruvate carboxylase but not phosphoenolpyruvate carboxykinase in dairy cows. J Dairy Sci. 2005;88(8):2938–48. https://doi.org/10.3168/jds.S0022-0302(05)72974-X.
Article
CAS
PubMed
Google Scholar
Salto R, Manzano M, Giron MD, Cano A, Castro A, Vilchez JD, et al. A slow-digesting carbohydrate diet during rat pregnancy protects offspring from non-alcoholic fatty liver disease risk through the modulation of the carbohydrate-response element and sterol regulatory element binding proteins. Nutrients. 2019;11(4):845–50.
Mackall JC, Lane MD. Role of pyruvate carboxylase in fatty acid synthesis: alterations during preadipocyte differentiation. Biochem Biophys Res Commun. 1977;79(3):720–5. https://doi.org/10.1016/0006-291X(77)91171-8.
Article
CAS
PubMed
Google Scholar
Freytag SO, Utter MF. Induction of pyruvate carboxylase apoenzyme and holoenzyme in 3T3-L1 cells during differentiation. Proc Natl Acad Sci U S A. 1980;77(3):1321–5. https://doi.org/10.1073/pnas.77.3.1321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munoz VR, Gaspar RC, Crisol BM, Formigari GP, Sant’Ana MR, Botezelli JD, et al. Physical exercise reduces pyruvate carboxylase (PCB) and contributes to hyperglycemia reduction in obese mice. J Physiol Sci. 2017;68:493–501.
Jitrapakdee S, Slawik M, Medina-Gomez G, Campbell M, Wallace JC, Sethi JK, et al. The peroxisome proliferator-activated receptor-gamma regulates murine pyruvate carboxylase gene expression in vivo and in vitro. J Biol Chem. 2005;280(29):27466–76. https://doi.org/10.1074/jbc.M503836200.
Article
CAS
PubMed
Google Scholar
Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998;47(4):507–14. https://doi.org/10.2337/diabetes.47.4.507.
Article
CAS
PubMed
Google Scholar
Pedersen KB, Buckley RS, Scioneaux R. Glucose induces expression of rat pyruvate carboxylase through a carbohydrate response element in the distal gene promoter. Biochem J. 2010;426(2):159–70. https://doi.org/10.1042/BJ20091266.
Article
CAS
PubMed
Google Scholar
Gauthier BR, Brun T, Sarret EJ, Ishihara H, Schaad O, Descombes P, et al. Oligonucleotide microarray analysis reveals PDX1 as an essential regulator of mitochondrial metabolism in rat islets. J Biol Chem. 2004;279(30):31121–30. https://doi.org/10.1074/jbc.M405030200.
Article
CAS
PubMed
Google Scholar
Efanov AM, Sewing S, Bokvist K, Gromada J. Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes. 2004;53(Suppl 3):S75–8. https://doi.org/10.2337/diabetes.53.suppl_3.S75.
Article
CAS
PubMed
Google Scholar
Yoshikawa H, Tajiri Y, Sako Y, Hashimoto T, Umeda F, Nawata H. Effects of free fatty acids on beta-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox. Metabolism. 2001;50(5):613–8. https://doi.org/10.1053/meta.2001.22565.
Article
CAS
PubMed
Google Scholar
Sonnewald U, Rae C. Pyruvate carboxylation in different model systems studied by (13)C MRS. Neurochem Res. 2010;35(12):1916–21. https://doi.org/10.1007/s11064-010-0257-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD, et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem. 2006;281(41):30593–602. https://doi.org/10.1074/jbc.M511908200.
Article
CAS
PubMed
Google Scholar
Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55(1):1–23. https://doi.org/10.1007/s12013-009-9054-7.
Article
CAS
PubMed
Google Scholar
Cappel DA, Deja S, Duarte JAG, Kucejova B, Inigo M, Fletcher JA, et al. Pyruvate-carboxylase-mediated anaplerosis promotes antioxidant capacity by sustaining TCA cycle and redox metabolism in liver. Cell Metab. 2019;29(6):1291–305 e1298. https://doi.org/10.1016/j.cmet.2019.03.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30. https://doi.org/10.1085/jgp.8.6.519.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nature Metabolism. 2020;2(2):127–9. https://doi.org/10.1038/s42255-020-0172-2.
Article
PubMed
Google Scholar
Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nature Metabolism. 2020;2(7):566–71. https://doi.org/10.1038/s42255-020-0243-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrot A, LMD F, Salustiano EJ, Gentile LB, Conde L, Filardy AA, et al. Metabolic symbiosis and immunomodulation: how tumor cell-derived lactate may disturb innate and adaptive immune responses. Front Oncol. 2018;8(81):1–10.
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61. https://doi.org/10.1016/j.gde.2008.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinde A, Wilmanski T, Chen H, Teegarden D, Wendt MK. Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer. Breast Cancer Res. 2018;20(1):76. https://doi.org/10.1186/s13058-018-1008-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22(5-6):396–403. https://doi.org/10.1016/j.semcancer.2012.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elia I, Doglioni G, Fendt S-M. Metabolic hallmarks of metastasis formation. Trends in Cell Biology. 2018;28(8):673–84. https://doi.org/10.1016/j.tcb.2018.04.002.
Article
CAS
PubMed
Google Scholar
Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger K, Veys K, et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 2016;17(3):837–48. https://doi.org/10.1016/j.celrep.2016.09.042.
Article
CAS
PubMed
Google Scholar
Hu K, Li K, Lv J, Feng J, Chen J, Wu H, et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 2020;130(4):1752–66. https://doi.org/10.1172/JCI124049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M, Daemen A, Hu M, Chan DA, Ethier SP, van’t Veer LJ et al: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013, 24(4):450-465, DOI: https://doi.org/10.1016/j.ccr.2013.08.020.
LeBoeuf SE, Wu WL, Karakousi TR, Karadal B, Jackson SR, Davidson SM, et al. Activation of oxidative stress response in cancer generates a druggable dependency on exogenous non-essential amino acids. Cell Metab. 2020;31(2):339–50 e334.
Article
CAS
PubMed
Google Scholar
Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22(4):577–89. https://doi.org/10.1016/j.cmet.2015.08.007.
Article
CAS
PubMed
Google Scholar
Yamaguchi N, Weinberg EM, Nguyen A, Liberti MV, Goodarzi H, Janjigian YY, et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. Elife. 2019;8. https://doi.org/10.7554/eLife.52135.
Phannasil P, Ansari IH, El Azzouny M, Longacre MJ, Rattanapornsompong K, Burant CF, et al. Mass spectrometry analysis shows the biosynthetic pathways supported by pyruvate carboxylase in highly invasive breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):537–51. https://doi.org/10.1016/j.bbadis.2016.11.021.
Article
CAS
PubMed
Google Scholar
Izquierdo-Garcia JL, Cai LM, Chaumeil MM, Eriksson P, Robinson AE, Pieper RO, et al. Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase. PLoS One. 2014;9(9):e108289. https://doi.org/10.1371/journal.pone.0108289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorendeau D, Rinaldi G, Boon R, Spincemaille P, Metzger K, Jager C, et al. Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab Eng. 2017;43(Pt B):187–97.
Article
CAS
PubMed
Google Scholar
Lussey-Lepoutre C, Hollinshead KE, Ludwig C, Menara M, Morin A, Castro-Vega LJ, et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun. 2015;6(1):8784. https://doi.org/10.1038/ncomms9784.
Article
CAS
PubMed
Google Scholar
Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C, et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol. 2015;17(10):1317–26. https://doi.org/10.1038/ncb3233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasheed MRHA, Tarjan G. Succinate dehydrogenase complex: an updated review. Archives of Pathology & Laboratory Medicine. 2018;142(12):1564–70. https://doi.org/10.5858/arpa.2017-0285-RS.
Article
Google Scholar
Delgado-Goñi T, Galobart TC, Wantuch S, Normantaite D, Leach MO, Whittaker SR, et al. Increased inflammatory lipid metabolism and anaplerotic mitochondrial activation follow acquired resistance to vemurafenib in BRAF-mutant melanoma cells. Br J Cancer. 2020;122(1):72–81. https://doi.org/10.1038/s41416-019-0628-x.
Article
CAS
PubMed
Google Scholar
Delgado-Goni T, Miniotis MF, Wantuch S, Parkes HG, Marais R, Workman P, et al. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF-mutant human melanoma cells. Mol Cancer Ther. 2016;15(12):2987–99. https://doi.org/10.1158/1535-7163.MCT-16-0068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020;11(2):105. https://doi.org/10.1038/s41419-020-2297-3.
Article
PubMed
PubMed Central
Google Scholar
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A. 2011;108(21):8674–9. https://doi.org/10.1073/pnas.1016627108.
Article
PubMed
PubMed Central
Google Scholar
Linares JF, Cordes T, Duran A, Reina-Campos M, Valencia T, Ahn CS, et al. ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. 2017;26(6):817–29 e816. https://doi.org/10.1016/j.cmet.2017.09.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Boufersaoui A, Yang C, Ko B, Rakheja D, Guevara G, et al. Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein. Metab Eng. 2017;43(Pt B):198–207.
Article
CAS
PubMed
Google Scholar
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96. https://doi.org/10.3109/10715761003667554.
Article
CAS
PubMed
Google Scholar
Bruntz RC, Belshoff AC, Zhang Y, Macedo JKA, Higashi RM, Lane AN, et al. Inhibition of anaplerotic glutaminolysis underlies selenite toxicity in human lung cancer. Proteomics. 2019;19(21-22):e1800486. https://doi.org/10.1002/pmic.201800486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed MAC, Ludwig C, Bunce CM, Khanim FL, Gunther UL. Malonate as a ROS product is associated with pyruvate carboxylase activity in acute myeloid leukaemia cells. Cancer Metab. 2016;4(1):15. https://doi.org/10.1186/s40170-016-0155-7.
Article
PubMed
PubMed Central
Google Scholar
Pinweha P, Phillips CA, Gregory PA, Li X, Chuayboonya P, Mongkolsiri P, et al. MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231 cells. Arch Biochem Biophys. 2019;677:108169. https://doi.org/10.1016/j.abb.2019.108169.
Article
CAS
PubMed
Google Scholar
Yang HY, Shen JX, Wang Y, Liu Y, Shen DY, Quan S. Tankyrase promotes aerobic glycolysis and proliferation of ovarian cancer through activation of Wnt/. Biomed Res Int. 2019;2019:2686340.
PubMed
PubMed Central
Google Scholar
Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, et al. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 2012;72(14):3607–17. https://doi.org/10.1158/0008-5472.CAN-12-0006.
Article
CAS
PubMed
Google Scholar
Lao-On U, Rojvirat P, Chansongkrow P, Phannasil P, Siritutsoontorn S, Charoensawan V, et al. c-Myc directly targets an over-expression of pyruvate carboxylase in highly invasive breast cancer. Biochim Biophys Acta Mol Basis Dis. 1866;2020(3):165656.
Article
Google Scholar
Blanquer-Rossello MDM, Oliver J, Sastre-Serra J, Valle A, Roca P. Leptin regulates energy metabolism in MCF-7 breast cancer cells. Int J Biochem Cell Biol. 2016;72:18–26. https://doi.org/10.1016/j.biocel.2016.01.002.
Article
CAS
PubMed
Google Scholar
Patterson RE, Rock CL, Kerr J, Natarajan L, Marshall SJ, Pakiz B, et al. Metabolism and breast cancer risk: frontiers in research and practice. J Acad Nutr Diet. 2013;113(2):288–96. https://doi.org/10.1016/j.jand.2012.08.015.
Article
CAS
PubMed
Google Scholar
Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. https://doi.org/10.1056/NEJMoa021423.
Article
PubMed
Google Scholar
Parva NR, Tadepalli S, Singh P, Qian A, Joshi R, Kandala H, et al. Prevalence of Vitamin D deficiency and associated risk factors in the US population (2011-2012). Cureus. 2018;10(6):e2741. https://doi.org/10.7759/cureus.2741.
Article
PubMed
PubMed Central
Google Scholar
Vanlint S. Vitamin D and obesity. Nutrients. 2013;5(3):949–56. https://doi.org/10.3390/nu5030949.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeczycki TN, St Maurice M, Jitrapakdee S, Wallace JC, Attwood PV, Cleland WW. Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli. Biochemistry. 2009;48(20):4305–13. https://doi.org/10.1021/bi9003759.
Article
CAS
PubMed
Google Scholar
MacDonald MJ, Tang J, Polonsky KS. Low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of Zucker diabetic fatty rats. Diabetes. 1996;45(11):1626–30. https://doi.org/10.2337/diab.45.11.1626.
Article
CAS
PubMed
Google Scholar
MacDonald MJ, Efendić S, Ostenson CG. Normalization by insulin treatment of low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of the GK rat. Diabetes. 1996;45(7):886–90. https://doi.org/10.2337/diab.45.7.886.
Article
PubMed
Google Scholar
Zeczycki TN, Maurice MS, Attwood PV. Inhibitors of pyruvate carboxylase. Open Enzym Inhib J. 2010;3(1):8–26. https://doi.org/10.2174/1874940201003010008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasan NM, Longacre MJ, Stoker SW, Boonsaen T, Jitrapakdee S, Kendrick MA, et al. Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase. J Biol Chem. 2008;283(42):28048–59. https://doi.org/10.1074/jbc.M804170200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Q, He Y, Wang X, Zhang Y, Hu M, Guo W, et al. Targeting pyruvate carboxylase by a small molecule suppresses breast cancer progression. Adv Sci (Weinh). 2020;7(9):1903483. https://doi.org/10.1002/advs.201903483.
Article
CAS
Google Scholar
Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes. 2013;62(7):2183–94. https://doi.org/10.2337/db12-1311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Huang J. The expanded role of fatty acid metabolism in cancer: new aspects and targets. Precis Clin Med. 2019;2(3):183–91. https://doi.org/10.1093/pcmedi/pbz017.
Article
PubMed
PubMed Central
Google Scholar
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64. https://doi.org/10.1016/j.freeradbiomed.2017.01.004.
Article
CAS
PubMed
Google Scholar
Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 2017;31(18):1827–40. https://doi.org/10.1101/gad.305805.117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godet I, Shin YJ, Ju JA, Ye IC, Wang G, Gilkes DM. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun. 2019;10(1):4862. https://doi.org/10.1038/s41467-019-12412-1.
Article
CAS
PubMed
PubMed Central
Google Scholar