Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.
Article
CAS
PubMed
Google Scholar
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
Article
CAS
PubMed
Google Scholar
Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell. 2016;36(5):540–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43(9):869–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2:127–9.
Article
PubMed
Google Scholar
Lassen U, Daugaard G, Eigtved A, Damgaard K, Friberg L. 18F-FDG whole body positron emission tomography (PET) in patients with unknown primary tumours (UPT). Eur J Cancer. 1999;35(7):1076–82.
Article
CAS
PubMed
Google Scholar
Godoy A, Ulloa V, Rodriguez F, Reinicke K, Yanez AJ, Garcia Mde L, et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol. 2006;207(3):614–27.
Article
CAS
PubMed
Google Scholar
Guppy M, Leedman P, Zu X, Russell V. Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J. 2002;364(Pt 1):309–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Johnson RJ, Andres-Hernando A, Roncal-Jimenez C, Sanchez-Lozada LG, Tolan DR, et al. Fructose production and metabolism in the kidney. J Am Soc Nephrol. 2020; In press.
Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol. 2014;25(11):2526–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kida K, Nakajo S, Kamiya F, Toyama Y, Nishio T, Nakagawa H. Renal net glucose release in vivo and its contribution to blood glucose in rats. J Clin Invest. 1978;62(4):721–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF Jr. Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969;48(3):574–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jauniaux E, Hempstock J, Teng C, Battaglia FC, Burton GJ. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab. 2005;90(2):1171–5.
Article
CAS
PubMed
Google Scholar
Walker DA. Physiological studies on acid metabolism. 7. Malic enzyme from Kalanchoe crenata: effects of carbon dioxide concentration. Biochem J. 1960;74:216–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hers HG. The mechanism of the formation of seminal fructose and fetal fructose. Biochim Biophys Acta. 1960;37:127–38.
Article
CAS
PubMed
Google Scholar
Barklay H, Haas P, et al. The sugar of the foetal blood, the amniotic and allantoic fluids. J Physiol. 1949;109(1-2):98–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hitchcock MW. Fructose in the sheep foetus. J Physiol. 1949;108(2):117–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
White CE, Piper EL, Noland PR, Daniels LB. Fructose utilization for nucleic acid synthesis in the fetal pig. J Anim Sci. 1982;55(1):73–6.
Article
CAS
PubMed
Google Scholar
Scott TW, Setchell BP, Bassett JM. Characterization and metabolism of ovine foetal lipids. Biochem J. 1967;104(3):1040–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Song G, Wu G, Bazer FW. Functional roles of fructose. Proc Natl Acad Sci U S A. 2012;109(25):E1619–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005;1(2):80–6.
Article
CAS
PubMed
Google Scholar
Brymora A, Flisinski M, Johnson RJ, Goszka G, Stefanska A, Manitius J. Low-fructose diet lowers blood pressure and inflammation in patients with chronic kidney disease. Nephrol Dial Transplant. 2012;27(2):608–12.
Article
CAS
PubMed
Google Scholar
Lustig RH, Mulligan K, Noworolski SM, Tai VW, Wen MJ, Erkin-Cakmak A, et al. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity (Silver Spring). 2016;24(2):453–60.
Article
CAS
Google Scholar
Erkin-Cakmak A, Bains Y, Caccavello R, Noworolski SM, Schwarz JM, Mulligan K, et al. Isocaloric fructose restriction reduces serum d-lactate concentration in children with obesity and metabolic syndrome. J Clin Endocrinol Metab. 2019;104(7):3003–11.
Article
PubMed
PubMed Central
Google Scholar
Schwimmer JB, Ugalde-Nicalo P, Welsh JA, Angeles JE, Cordero M, Harlow KE, et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA. 2019;321(3):256–65.
Article
PubMed
PubMed Central
Google Scholar
Gugliucci A, Lustig RH, Caccavello R, Erkin-Cakmak A, Noworolski SM, Tai VW, et al. Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. Atherosclerosis. 2016;253:171–7.
Article
CAS
PubMed
Google Scholar
Schwarz JM, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017;153(3):743–52.
Article
CAS
PubMed
Google Scholar
Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128(2):545–55.
Article
PubMed
PubMed Central
Google Scholar
Johnson RJ, Stenvinkel P, Andrews P, Sanchez-Lozada LG, Nakagawa T, Gaucher E, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med. 2019.
Andres-Hernando A, Li N, Cicerchi C, Inaba S, Chen W, Roncal-Jimenez C, et al. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun. 2017;8:14181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ, Ruzycki P, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun. 2013;4:2434.
Article
PubMed
CAS
Google Scholar
Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci U S A. 2018;115(12):3138–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirtschink P, Krishnan J, Grimm F, Sarre A, Horl M, Kayikci M, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature. 2015;522(7557):444–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roncal-Jimenez CA, Ishimoto T, Lanaspa MA, Milagres T, Hernando AA, Jensen T, et al. Aging-associated renal disease in mice is fructokinase dependent. Am J Physiol Renal Physiol. 2016;311(4):F722–F30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roncal Jimenez CA, Ishimoto T, Lanaspa MA, Rivard CJ, Nakagawa T, Ejaz AA, et al. Fructokinase activity mediates dehydration-induced renal injury. Kidney Int. 2014;86(2):294–302.
Article
CAS
PubMed
Google Scholar
Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem. 2009;57(8):763–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci U S A. 2012;109(11):4320–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27(2):351–61 e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579(7800):586–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andres-Hernando A, Orlicky DJ, Kuwabara M, Ishimoto T, Nakagawa T, Johnson RJ, et al. Deletion of fructokinase in the liver or in the intestine reveals differential effects on sugar-induced metabolic dysfunction. Cell Metab. 2020;in press.
Bu P, Chen KY, Xiang K, Johnson C, Crown SB, Rakhilin N, et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 2018;27(6):1249–62 e4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HJ, Cha JY. Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism. BMB Rep. 2018;51(9):429–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanaspa MA, Sanchez-Lozada LG, Cicerchi C, Li N, Roncal-Jimenez CA, Ishimoto T, et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One. 2012;7(10):e47948.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown KS, Kalinowski SS, Megill JR, Durham SK, Mookhtiar KA. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes. 1997;46(2):179–86.
Article
CAS
PubMed
Google Scholar
Niculescu L, Veiga-da-Cunha M, Van Schaftingen E. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochem J. 1997;321(Pt 1):239–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maenpaa PH, Raivio KO, Kekomaki MP. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science. 1968;161(847):1253–4.
Article
CAS
PubMed
Google Scholar
Woods HF, Eggleston LV, Krebs HA. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970;119(3):501–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290(3):F625–31.
Article
CAS
PubMed
Google Scholar
Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM, Lauritzen H, et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019;30(4):735–53 e4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris DS, Slot JW, Geuze HJ, James DE. Polarized distribution of glucose transporter isoforms in Caco-2 cells. Proc Natl Acad Sci U S A. 1992;89(16):7556–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahraoui L, Rousset M, Dussaulx E, Darmoul D, Zweibaum A, Brot-Laroche E. Expression and localization of GLUT-5 in Caco-2 cells, human small intestine, and colon. Am J Physiol. 1992;263(3 Pt 1):G312–8.
CAS
PubMed
Google Scholar
Zamora-Leon SP, Golde DW, Concha II, Rivas CI, Delgado-Lopez F, Baselga J, et al. Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci U S A. 1996;93(5):1847–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michaud DS, Liu S, Giovannucci E, Willett WC, Colditz GA, Fuchs CS. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst. 2002;94(17):1293–300.
Article
CAS
PubMed
Google Scholar
Schernhammer ES, Hu FB, Giovannucci E, Michaud DS, Colditz GA, Stampfer MJ, et al. Sugar-sweetened soft drink consumption and risk of pancreatic cancer in two prospective cohorts. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2098–105.
Article
CAS
PubMed
Google Scholar
Larsson SC, Bergkvist L, Wolk A. Consumption of sugar and sugar-sweetened foods and the risk of pancreatic cancer in a prospective study. Am J Clin Nutr. 2006;84(5):1171–6.
Article
CAS
PubMed
Google Scholar
Hui H, Huang D, McArthur D, Nissen N, Boros LG, Heaney AP. Direct spectrophotometric determination of serum fructose in pancreatic cancer patients. Pancreas. 2009;38(6):706–12.
Article
CAS
PubMed
Google Scholar
Michaud DS, Fuchs CS, Liu S, Willett WC, Colditz GA, Giovannucci E. Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol Biomarkers Prev. 2005;14(1):138–47.
CAS
PubMed
Google Scholar
Terry PD, Jain M, Miller AB, Howe GR, Rohan TE. Glycemic load, carbohydrate intake, and risk of colorectal cancer in women: a prospective cohort study. J Natl Cancer Inst. 2003;95(12):914–6.
Article
CAS
PubMed
Google Scholar
Weng Y, Zhu J, Chen Z, Fu J, Zhang F. Fructose fuels lung adenocarcinoma through GLUT5. Cell Death Dis. 2018;9(5):557.
Article
PubMed
PubMed Central
Google Scholar
Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, et al. Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell. 2016;30(5):779–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao W, Li N, Li Z, Xu J, Su C. Ketohexokinase is involved in fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun. 2018;503(3):1298–306.
Article
CAS
PubMed
Google Scholar
Su C, Li H, Gao W. GLUT5 increases fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun. 2018;500(2):462–9.
Article
CAS
PubMed
Google Scholar
Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010;70(15):6368–76.
Article
CAS
PubMed
Google Scholar
Monzavi-Karbassi B, Hine RJ, Stanley JS, Ramani VP, Carcel-Trullols J, Whitehead TL, et al. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells. Int J Oncol. 2010;37(3):615–22.
Article
CAS
PubMed
Google Scholar
Jiang Y, Pan Y, Rhea PR, Tan L, Gagea M, Cohen L, et al. A sucrose-enriched diet promotes tumorigenesis in mammary gland in part through the 12-lipoxygenase pathway. Cancer Res. 2016;76(1):24–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363(6433):1345–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.
Article
CAS
PubMed
Google Scholar
Li X, Qian X, Peng LX, Jiang Y, Hawke DH, Zheng Y, et al. A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. Nat Cell Biol. 2016;18(5):561–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oppelt SA, Zhang W, Tolan DR. Specific regions of the brain are capable of fructose metabolism. Brain Res. 1657;2017:312–22.
Google Scholar
Stanhope KL. More pieces of the fructose puzzle. J Intern Med. 2017;282(2):202–4.
Article
CAS
PubMed
Google Scholar
Choo VL, Sievenpiper JL. The ecologic validity of fructose feeding trials: supraphysiological feeding of fructose in human trials requires careful consideration when drawing conclusions on cardiometabolic risk. Front Nutr. 2015;2:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Schaftingen E, Detheux M. Veiga da Cunha M. Short-term control of glucokinase activity: role of a regulatory protein. FASEB J. 1994;8(6):414–9.
Article
PubMed
Google Scholar
Agius L, Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J. 1993;296(Pt 3):785–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiota M, Galassetti P, Monohan M, Neal DW, Cherrington AD. Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes. 1998;47(6):867–73.
Article
CAS
PubMed
Google Scholar
Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287(48):40732–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holm E, Hagmuller E, Staedt U, Schlickeiser G, Gunther HJ, Leweling H, et al. Substrate balances across colonic carcinomas in humans. Cancer Res. 1995;55(6):1373–8.
CAS
PubMed
Google Scholar
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warburg O, Wind F, Megelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;51(2):349–53.
Article
CAS
PubMed
Google Scholar
Kumar VB, Viji RI, Kiran MS, Sudhakaran PR. Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol. 2007;211(2):477–85.
Article
CAS
PubMed
Google Scholar
Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71(7):2550–60.
Article
CAS
PubMed
Google Scholar
San-Millan I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017;38(2):119–33.
CAS
PubMed
Google Scholar
Sun SZ, Empie MW. Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab (Lond). 2012;9(1):89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.
Article
CAS
PubMed
Google Scholar
Tappy L, Rosset R. Fructose metabolism from a functional perspective: implications for athletes. Sports Med. 2017;47(Suppl 1):23–32.
Article
PubMed
Google Scholar
Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9(4):539–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaupel P, Schlenger K, Knoop C, Hockel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991;51(12):3316–22.
CAS
PubMed
Google Scholar
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47.
Article
CAS
PubMed
Google Scholar
Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science. 2017;356(6335):307–11.
Article
CAS
PubMed
Google Scholar
Anundi I, King J, Owen DA, Schneider H, Lemasters JJ, Thurman RG. Fructose prevents hypoxic cell death in liver. Am J Physiol. 1987;253(3 Pt 1):G390–6.
CAS
PubMed
Google Scholar
Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One. 2008;3(8):e2915.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gregory GA, Welsh FA, Yu AC, Chan PH. Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes. Brain Res. 1990;516(2):310–2.
Article
CAS
PubMed
Google Scholar
Markov AK. Hemodynamics and metabolic effects of fructose 1-6 diphosphate in ischemia and shock--experimental and clinical observations. Ann Emerg Med. 1986;15(12):1470–7.
Article
CAS
PubMed
Google Scholar
Hood K, Hollaway MR. The significant role of fructose-1,6-diphosphate in the regulatory kinetics of phosphofructokinase. FEBS Lett. 1976;68(1):8–14.
Article
CAS
PubMed
Google Scholar
Farias LA, Sun J, Markov AK. Improved brain metabolism with fructose 1-6 diphosphate during insulin-induced hypoglycemic coma. Am J Med Sci. 1989;297(5):294–9.
Article
CAS
PubMed
Google Scholar
Bickler PE, Kelleher JA. Fructose-1,6-bisphosphate stabilizes brain intracellular calcium during hypoxia in rats. Stroke. 1992;23(11):1617–22.
Article
CAS
PubMed
Google Scholar
Wahjudi PN, Patterson ME, Lim S, Yee JK, Mao CS, Lee WN. Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry. Clin Biochem. 2010;43(1-2):198–207.
Article
CAS
PubMed
Google Scholar
Hwang YC, Sato S, Tsai JY, Yan S, Bakr S, Zhang H, et al. Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J. 2002;16(2):243–5.
Article
CAS
PubMed
Google Scholar
Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 1998;395(6699):284–8.
Article
CAS
PubMed
Google Scholar
Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol. 2005;3(1):36–46.
Article
CAS
PubMed
Google Scholar
Hasuike Y, Nakanishi T, Otaki Y, Nanami M, Tanimoto T, Taniguchi N, et al. Plasma 3-deoxyglucosone elevation in chronic renal failure is associated with increased aldose reductase in erythrocytes. Am J Kidney Dis. 2002;40(3):464–71.
Article
CAS
PubMed
Google Scholar
Saraswat M, Mrudula T, Kumar PU, Suneetha A, Rao Rao TS, Srinivasulu M, et al. Overexpression of aldose reductase in human cancer tissues. Med Sci Monit. 2006;12(12):CR525–9.
CAS
PubMed
Google Scholar
Wuest M, Trayner BJ, Grant TN, Jans HS, Mercer JR, Murray D, et al. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer. Nucl Med Biol. 2011;38(4):461–75.
Article
CAS
PubMed
Google Scholar
Levi J, Cheng Z, Gheysens O, Patel M, Chan CT, Wang Y, et al. Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem. 2007;18(3):628–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kranhold JF, Loh D, Morris RC Jr. Renal fructose-metabolizing enzymes: significance in hereditary fructose intolerance. Science. 1969;165(3891):402–3.
Article
CAS
PubMed
Google Scholar