Gangolf M, Czerniecki J, Radermecker M, Detry O, Nisolle M, Jouan C, Martin D, Chantraine F, Lakaye B, Wins P, Grisar T, Bettendorff L: Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One. 2010, 5: e13616-10.1371/journal.pone.0013616.
PubMed Central
PubMed
Google Scholar
Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline: Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. 1998, Washington, DC: National Academies Press (US)
Google Scholar
Ganapathy V, Smith SB, Prasad PD: SLC19: the folate/thiamine transporter family. Pfluegers Arch. 2004, 447: 641-646. 10.1007/s00424-003-1068-1.
CAS
Google Scholar
Rajgopal A, Edmondnson A, Goldman ID, Zhao R: SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta. 2001, 1537: 175-178. 10.1016/S0925-4439(01)00073-4.
CAS
PubMed
Google Scholar
Subramanian VS, Marchant JS, Parker I, Said HM: Cell biology of the human thiamine transporter-1 (hTHTR1). J Biol Chem. 2003, 278: 3976-3984. 10.1074/jbc.M210717200.
CAS
PubMed
Google Scholar
Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD, Ganapathy V, Prasad PD: Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem. 1999, 274: 31925-31929. 10.1074/jbc.274.45.31925.
CAS
PubMed
Google Scholar
Said HM, Balamurugan K, Subramanian VS, Marchant JS: Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am J Physiol. 2004, 286: G491-G498.
CAS
Google Scholar
Hoyumpa AM, Strickland R, Sheehan JJ, Yarborough G, Nichols S: Dual system of intestinal thiamine transport in humans. J Lab Clin Med. 1982, 99: 701-708.
CAS
PubMed
Google Scholar
Zielinska-Dawidziak M, Grajek K, Olejnik A, Czaczyk K, Grajek W: Transport of high concentration of thiamin, riboflavin and pyridoxine across intestinal epithelial cells Caco-2. J Nutr Sci Vitaminol. 2008, 54: 423-429. 10.3177/jnsv.54.423.
CAS
PubMed
Google Scholar
Lemos C, Faria A, Meireles M, Martel F, Monteiro R, Calhau C: Thiamine is a substrate of organic cation transporters in Caco-2 cells. Eur J Pharmacol. 2012, 682: 37-42. 10.1016/j.ejphar.2012.02.028.
CAS
PubMed
Google Scholar
Nabokina SM, Said HM: A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2012, 303: G389-395. 10.1152/ajpgi.00151.2012.
PubMed Central
PubMed
Google Scholar
Nosaka K, Onozuka M, Kakazu N, Hibi S, Nishimura H, Nishino H, Abe T: Isolation and characterization of a human thiamine pyrophosphokinase cDNA. Biochim Biophys Acta. 2001, 1517: 293-297. 10.1016/S0167-4781(00)00247-5.
CAS
PubMed
Google Scholar
Bettendorff L: Thiamine homeostasis in neuroblastoma cells. Neurochem Int. 1995, 26: 295-302. 10.1016/0197-0186(94)00123-C.
CAS
PubMed
Google Scholar
Bellyei S, Szigeti A, Boronkai A, Szabo Z, Bene J, Janaky T, Barna L, Sipos K, Minik O, Kravjak A, Ohmacht R, Melegh B, Zavodszky P, Than GN, Sumegi B, Bohn H, Than NG: Cloning, sequencing, structural and molecular biological characterization of placental protein 20 (PP20)/human thiamin pyrophosphokinase (hTPK). Placenta. 2005, 26: 34-46. 10.1016/j.placenta.2004.03.008.
CAS
PubMed
Google Scholar
Rindi G, Laforenza U: Thiamine intestinal transport and related issues: recent aspects. Proc Soc Exp Biol Med. 2000, 224: 246-255. 10.1046/j.1525-1373.2000.22428.x.
CAS
PubMed
Google Scholar
Zhao R, Gao F, Goldman ID: Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol. 2002, 282: C1512-1517. 10.1152/ajpcell.00547.2001.
CAS
PubMed
Google Scholar
Zhao R, Gao F, Wang Y, Diaz GA, Gelb BD, Goldman ID: Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J Biol Chem. 2001, 276: 1114-1118. 10.1074/jbc.M007919200.
CAS
PubMed
Google Scholar
Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F, Schwartzberg PL, Chen A, Castegna A, Verhoeven N, Mathews CK, Palmieri F, Biesecker LG: Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc Natl Acad Sci. 2006, 103: 15927-15932. 10.1073/pnas.0607661103.
PubMed Central
CAS
PubMed
Google Scholar
Kang J, Samuels DC: The evidence that the DNC (SLC25A19) is not the mitochondrial deoxyribonucleotide carrier. Mitochondrion. 2008, 8: 103-108. 10.1016/j.mito.2008.01.001.
CAS
PubMed
Google Scholar
Liu S, Huang H, Lu X, Golinski M, Comesse S, Watt D, Grossman RB, Moscow JA: Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and is association with resistance to apoptosis. Mol Cancer Res. 2003, 1: 665-673.
CAS
PubMed
Google Scholar
Liu X, Lam EK-Y, Wang X, Zhang J-B, Cheng Y-Y, Lam YW, Ng EK-O, Yu J, Chan FK-L, Jin H-C, Sung JJ-Y: Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer. Tumor Biol. 2009, 30: 242-248. 10.1159/000243767.
Google Scholar
Ikehata M, Ueda K, Iwakawa S: Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull. 2012, 35: 301-307. 10.1248/bpb.35.301.
CAS
PubMed
Google Scholar
Ng EK, Leung CP, Shin VY, Wong CL, Ma ES, Jin HC, Chu KM, Kwong A: Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. PLoS One. 2011, 6: e22233-10.1371/journal.pone.0022233.
PubMed Central
CAS
PubMed
Google Scholar
Zastre JA, Hanberry BS, Sweet RL, McGinnis AC, Venuti KR, Bartlett MG, Govindarajan R: Up-regulation of vitamin B1 homeostasis genes in breast cancer. J Nutr Biochem. 2013, 10.1016/j.jnutbio.2013.02.002. [Epub ahead of print]
Google Scholar
Liu S, Stromberg A, Tai H-H, Moscow JA: Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. Mol Cancer Res. 2004, 2: 477-487.
CAS
PubMed
Google Scholar
Sweet R, Paul A, Zastre J: Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line. Cancer Biol Ther. 2010, 10: 1101-1111. 10.4161/cbt.10.11.13444.
CAS
PubMed
Google Scholar
Hee SB, Hyuk CS, Young CE, Min-Jeong S, Ki-Chul H, Keun CH, Hyung CJ, Yangsoo J: Thiamine attenuates hypoxia-induced cell death in cultured neonatal rat cardiomyocytes. Mol Cells. 2004, 18: 133-140.
Google Scholar
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT: Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci. 1998, 95: 11715-11720. 10.1073/pnas.95.20.11715.
PubMed Central
CAS
PubMed
Google Scholar
Liu L, Wise DR, Diehl JA, Simon MC: Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem. 2008, 283: 31153-31162. 10.1074/jbc.M805056200.
PubMed Central
CAS
PubMed
Google Scholar
Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1: 401-408. 10.1016/j.cmet.2005.05.001.
CAS
PubMed
Google Scholar
Trachootham D, Alexandre J, Huang P: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov. 2009, 8: 579-591. 10.1038/nrd2803.
CAS
PubMed
Google Scholar
Simon HU, Haj-Yehia A, Levi-Schaffer F: Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000, 5: 415-418. 10.1023/A:1009616228304.
CAS
PubMed
Google Scholar
Lukienko PI, Mel’nichenko NG, Zverinskii IV, Zabrodskaya SV: Antioxidant properties of thiamine. Bull Exp Biol Med. 2000, 130: 874-876.
CAS
PubMed
Google Scholar
Schmid U, Stopper H, Heidland A, Schupp N: Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev. 2008, 24: 371-377. 10.1002/dmrr.860.
CAS
PubMed
Google Scholar
Martin PR, Singleton CK, Hiller-Sturmhofel S: The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health. 2003, 27: 134-142.
PubMed
Google Scholar
Boros LG: Population thiamine status and varying cancer rates between western, Asian and African countries. Anticancer Res. 2000, 20: 2245-2248.
CAS
PubMed
Google Scholar
Kaul L, Heshmat MY, Kovi J, Jackson MA, Jackson AG, Jones GW, Edson M, Enterline JP, Worrell RG, Perry SL: The role of diet in prostate cancer. Nutr Cancer. 1987, 9: 123-128. 10.1080/01635588709513919.
CAS
PubMed
Google Scholar
Kabat GC, Miller AB, Jain M, Rohan TE: Dietary intake of selected B vitamins in relation to risk of major cancers in women. Br J Cancer. 2008, 99: 816-821. 10.1038/sj.bjc.6604540.
PubMed Central
CAS
PubMed
Google Scholar
Bruce WR, Furrer R, Shangari N, O’Brien PJ, Medline A, Wang Y: Marginal dietary thiamin deficiency induces the formation of colonic aberrant crypt foci (ACF) in rats. Cancer Lett. 2003, 202: 125-129. 10.1016/j.canlet.2003.08.005.
CAS
PubMed
Google Scholar
Lee BY, Yanamandra K, Bocchini JA: Thiamin deficiency: a possible major cause of some tumors?. Oncol Rep. 2005, 14: 1589-1592.
CAS
PubMed
Google Scholar
Chamberlain BR, Buttery JE, Pannall PR: A stable reagent mixture for the whole blood transketolase assay. Ann Clin Biochem. 1996, 33: 352-354.
CAS
PubMed
Google Scholar
Basu TK, Dickerson JWT: The thiamin status of early cancer patients with particular reference to those with breast and bronchial carcinomas. Oncol. 1976, 33: 250-252. 10.1159/000225157.
CAS
Google Scholar
Basu TK, Dickerson JW, Raven RW, Williams DC: The thiamine status of patients with cancer as determined by the red cell transketolase activity. Int J Vitam Nutr Res. 1974, 44: 53-58.
CAS
PubMed
Google Scholar
van Zaanen HC, van der Lelie J: Thiamine deficiency in hematologic malignant tumors. Cancer. 1992, 69: 1710-1713. 10.1002/1097-0142(19920401)69:7<1710::AID-CNCR2820690711>3.0.CO;2-D.
CAS
PubMed
Google Scholar
Seligmann H, Levi R, Konijn AM, Prokocimer M: Thiamine deficiency in patients with B-chronic lymphocytic leukaemia: a pilot study. Postgrad Med J. 2001, 77: 582-585. 10.1136/pmj.77.911.582.
PubMed Central
CAS
PubMed
Google Scholar
Tsao S-M, Yin M-C, Liu W-H: Oxidant stress and B vitamins status in patients with non-small cell lung cancer. Nutr Cancer. 2007, 59: 8-13. 10.1080/01635580701365043.
CAS
PubMed
Google Scholar
Trebukhina RV, Ostrovsky YM, Shapot VS, Mikhaltsevich GN, Tumanov VN: Turnover of [14C]thiamin and activities of thiamin pyrophosphate-dependent enzymes in tissues of mice with Ehrlich ascites carcinoma. Nutr Cancer. 1984, 6: 260-273.
CAS
PubMed
Google Scholar
Trebukhina RV, Ostrovsky Yu M, Shapot VS, Petushok VG, Velichko MG, Tumanov VN, Mikhaltsevich GN: Thiamine metabolism in the liver of mice with Ehrlich ascites carcinoma. Neoplasma. 1982, 29: 257-268.
CAS
PubMed
Google Scholar
Baker H, Frank O, Chen T, Feingold S, DeAngelis B, Baker ER: Elevated vitamin levels in colon adenocarcinoma as compared with metastatic liver adenocarcinoma from colon primary and normal adjacent tissue. Cancer. 1981, 47: 2883-2886. 10.1002/1097-0142(19810615)47:12<2883::AID-CNCR2820471222>3.0.CO;2-I.
CAS
PubMed
Google Scholar
Aksoy M, Basu TK, Brient J, Dickerson JW: Thiamin status of patients treated with drug combinations containing 5-fluorouracil. Eur J Cancer. 1980, 16: 1041-1045.
CAS
PubMed
Google Scholar
Buesa JM, Garcia-Teijido P, Losa R, Fra J: Treatment of ifosfamide encephalopathy with intravenous thiamin. Clin Cancer Res. 2003, 9: 4636-4637.
CAS
PubMed
Google Scholar
Ames B, Lewis LD, Chaffee S, Kim J, Morse R: Ifosfamide-induced encephalopathy and movement disorder. Pediatr Blood Cancer. 2010, 54: 624-626.
PubMed
Google Scholar
Hamadani M, Awan F: Role of thiamine in managing ifosfamide-induced encephalopathy. J Oncol Pharm Pract. 2006, 12: 237-239. 10.1177/1078155206073553.
CAS
PubMed
Google Scholar
Lombardi G, Zustovich F, Nicoletto MO, Donach M, Pastorelli D: Important role of thiamine in preventing ifosfamide-induced encephalopathy. J Oncol Pharm Pract. 2010, 16: 135-136. 10.1177/1078155209342134.
CAS
PubMed
Google Scholar
Losa R, Sierra MI, Fernández A, Blanco D, Buesa JM: Determination of thiamine and its phosphorylated forms in human plasma, erythrocytes and urine by HPLC and fluorescence detection: a preliminary study on cancer patients. J Pharm Biomed Anal. 2005, 37: 1025-1029. 10.1016/j.jpba.2004.08.038.
CAS
PubMed
Google Scholar
Heier MS, Dornish JM: Effect of the fluoropyrimidines 5-fluorouracil and doxifluridine on cellular uptake of thiamin. Anticancer Res. 1989, 9: 1073-1077.
CAS
PubMed
Google Scholar
Basu TK, Aksoy M, Dickerson JW: Effects of 5-fluorouracil on the thiamin status of adult female rats. Chemother. 1979, 25: 70-76. 10.1159/000237825.
CAS
Google Scholar
Comin-Anduix B, Boren J, Martinez S, Moro C, Centelles JJ, Trebukhina R, Petushok N, Lee W-NP, Boros LG, Cascante M: The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur J Biochem. 2001, 268: 4177-4182. 10.1046/j.1432-1327.2001.02329.x.
CAS
PubMed
Google Scholar
Daily A, Liu S, Bhatnagar S, Karabakhtsian RG, Moscow JA: Low-thiamine diet increases mammary tumor latency in FVB/N-Tg(MMTVneu) mice. Int J Vitam Nutr Res. 2012, 82: 298-302. 10.1024/0300-9831/a000122.
CAS
PubMed
Google Scholar
Liu S, Monks NR, Hanes JW, Begley TP, Yu H, Moscow JA: Sensitivity of breast cancer cell lines to recombinant thiaminase I. Cancer Chemother Pharmacol. 2010, 66: 171-179. 10.1007/s00280-009-1148-9.
CAS
PubMed
Google Scholar
Daily A, Liu S, Bae Y, Bhatnagar S, Moscow JA: Linear chain PEGylated recombinant Bacillus thiaminolyticus thiaminase I enzyme has growth inhibitory activity against lymphoid leukemia cell lines. Mol Cancer Ther. 2011, 10: 1563-1570. 10.1158/1535-7163.MCT-11-0003.
CAS
PubMed
Google Scholar
Boros LG, Puigjaner J, Cascante M, Lee W-NP, Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P, Melvin WS, Schirmer WJ: Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997, 57: 4242-4248.
CAS
PubMed
Google Scholar
Rais B, Comin B, Puigjaner J, Brandes JL, Creppy E, Saboureau D, Ennamany R, Lee W-NP, Boros LG, Cascante M: Oxythiamin and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Lett. 1999, 456: 113-118. 10.1016/S0014-5793(99)00924-2.
CAS
PubMed
Google Scholar
Ramos-Montoya A, Lee WN, Bassilian S, Lim S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noe V, Centelles JJ, Cascante M: Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int J Cancer. 2006, 119: 2733-2741. 10.1002/ijc.22227.
CAS
PubMed
Google Scholar
Chornyy S, Parkhomenko J, Chorna N: Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells. Acta Biochim Pol. 2007, 54: 315-322.
CAS
PubMed
Google Scholar
Yang CM, Liu YZ, Liao JW, Hu ML: The in vitro and in vivo anti-metastatic efficacy of oxythiamine and the possible mechanisms of action. Clin Exp Metastasis. 2010, 27: 341-349. 10.1007/s10585-010-9331-2.
CAS
PubMed
Google Scholar
Boros LG, Torday JS, Lim S, Bassilian S, Cascante M, Lee W-NP: Transforming growth factor beta 2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res. 2000, 60: 1183-1185.
CAS
PubMed
Google Scholar
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nat. 2008, 452: 230-233. 10.1038/nature06734.
CAS
Google Scholar
Mazurek S: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011, 43: 969-980. 10.1016/j.biocel.2010.02.005.
CAS
PubMed
Google Scholar
Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005, 15: 300-308. 10.1016/j.semcancer.2005.04.009.
CAS
PubMed
Google Scholar
Eigenbrodt E, Basenau D, Holthusen S, Mazurek S, Fischer G: Quantification of tumor type M2 pyruvate kinase (Tu M2-PK) in human carcinomas. Anticancer Res. 1997, 17: 3153-3156.
CAS
PubMed
Google Scholar
Schneider J, Morr H, Velcovsky HG, Weisse G, Eigenbrodt E: Quantitative detection of tumor M2-pyruvate kinase in plasma of patients with lung cancer in comparison to other lung diseases. Cancer Detect Prev. 2000, 24: 531-535.
CAS
PubMed
Google Scholar
Hathurusinghe HR, Goonetilleke KS, Siriwardena AK: Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Ann Surg Oncol. 2007, 14: 2714-2720. 10.1245/s10434-007-9481-x.
PubMed
Google Scholar
Mazurek S, Boschek CB, Eigenbrodt E: The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr. 1997, 29: 315-330. 10.1023/A:1022490512705.
CAS
PubMed
Google Scholar
Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, Eschrich S, Qu X, Forsyth P, Gillies R: The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res. 2012, 72: 5878-5888. 10.1158/0008-5472.CAN-12-1572-T.
CAS
PubMed
Google Scholar
Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB: Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha -induced metabolic reprograming. Oncog. 2010, 29: 2962-2972. 10.1038/onc.2010.67.
CAS
Google Scholar
Serkova N, Boros LG: Detection of resistance to imatinib by metabolic profiling: clinical and drug development implications. Am J Pharmacogenomics. 2005, 5: 293-302. 10.2165/00129785-200505050-00002.
CAS
PubMed
Google Scholar
Langbein S, Zerilli M, zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF: Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 2006, 94: 578-585. 10.1038/sj.bjc.6602962.
PubMed Central
CAS
PubMed
Google Scholar
Diaz-Moralli S, Tarrado-Castellarnau M, Alenda C, Castells A, Cascante M: Transketolase-like 1 expression is modulated during colorectal cancer progression and metastasis formation. PLoS One. 2011, 6: e25323-10.1371/journal.pone.0025323.
PubMed Central
CAS
PubMed
Google Scholar
Staiger WI, Coy JF, Grobholz R, Hofheinz RD, Lukan N, Post S, Schwarzbach MH, Willeke F: Expression of the mutated transketolase TKTL1, a molecular marker in gastric cancer. Oncol Rep. 2006, 16: 657-661.
CAS
PubMed
Google Scholar
Foeldi M, Stickeler E, Bau L, Kretz O, Watermann D, Gitsch G, Kayser G, Zur Hausen A, Coy JF: Transketolase protein TKTL1 overexpression: a potential biomarker and therapeutic target in breast cancer. Oncol Rep. 2007, 17: 841-845.
CAS
Google Scholar
Krockenberger M, Engel JB, Schmidt M, Kohrenhagen N, Hausler SF, Dombrowski Y, Kapp M, Dietl J, Honig A: Expression of transketolase-like 1 protein (TKTL1) in human endometrial cancer. Anticancer Res. 2010, 30: 1653-1659.
CAS
PubMed
Google Scholar
Schultz H, Kaehler D, Branscheid D, Vollmer E, Zabel P, Goldmann T: TKTL1 is overexpressed in a large portion of non-small cell lung cancer specimens. Diagn Pathol. 2008, 3: 35-10.1186/1746-1596-3-35.
PubMed Central
PubMed
Google Scholar
Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, Horn E, Dietl J, Kammerer U: Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer. 2007, 17: 101-106. 10.1111/j.1525-1438.2007.00799.x.
CAS
PubMed
Google Scholar
Volker HU, Scheich M, Schmausser B, Kammerer U, Eck M: Overexpression of transketolase TKTL1 is associated with shorter survival in laryngeal squamous cell carcinomas. Eur Arch Otorhinolaryngol. 2007, 264: 1431-1436. 10.1007/s00405-007-0394-x.
PubMed
Google Scholar
Schmidt M, Voelker H-U, Kapp M, Krockenberger M, Dietl J, Kammerer U: Glycolytic phenotype in breast cancer: activation of Akt, up-regulation of GLUT1, TKTL1 and down-regulation of M2PK. J Cancer Res Clin Oncol. 2010, 136: 219-225. 10.1007/s00432-009-0652-y.
CAS
PubMed
Google Scholar
Schwaab J, Horisberger K, Strobel P, Bohn B, Gencer D, Kahler G, Kienle P, Post S, Wenz F, Hofmann WK, Hofheinz RD, Erben P: Expression of Transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy. BMC Cancer. 2011, 11: 363-10.1186/1471-2407-11-363.
PubMed Central
CAS
PubMed
Google Scholar
Hu L-H, Yang J-H, Zhang D-T, Zhang S, Wang L, Cai P-C, Zheng J-F, Huang J-S: The TKTL1 gene influences total transketolase activity and cell proliferation in human colon cancer LoVo cells. Anticancer Drugs. 2007, 18: 427-433. 10.1097/CAD.0b013e328013d99e.
CAS
PubMed
Google Scholar
Zhang S, Yue JX, Yang JH, Cai PC, Kong WJ: Overexpression of transketolase protein TKTL1 is associated with occurrence and progression in nasopharyngeal carcinoma. Cancer Biol Ther. 2008, 7: 517-522. 10.4161/cbt.7.4.5479.
CAS
PubMed
Google Scholar
Chen H, Yue J-X, Yang S-H, Ding H, Zhao R-W, Zhang S: Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res. 2009, 28: 43-10.1186/1756-9966-28-43.
PubMed Central
CAS
PubMed
Google Scholar
Xu X, Zur Hausen A, Coy JF, Lochelt M: Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 2009, 124: 1330-1337. 10.1002/ijc.24078.
CAS
PubMed
Google Scholar
Zhang S, Yang J-H, Guo C-K, Cai P-c: Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett. 2007, 253: 108-114. 10.1016/j.canlet.2007.01.010.
CAS
PubMed
Google Scholar
Yuan W, Wu S, Guo J, Chen Z, Ge J, Yang P, Hu B, Chen Z: Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther. 2010, 9: 710-716. 10.4161/cbt.9.9.11431.
CAS
PubMed
Google Scholar
Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA: TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res. 2010, 16: 857-866. 10.1158/1078-0432.CCR-09-2604.
PubMed Central
CAS
PubMed
Google Scholar
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Sci. 2011, 334: 1278-1283. 10.1126/science.1211485.
CAS
Google Scholar
Wanka C, Steinbach JP, Rieger J: Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012, 287: 33436-33446. 10.1074/jbc.M112.384578.
PubMed Central
CAS
PubMed
Google Scholar
Mitschke L, Parthier C, Schroder-Tittmann K, Coy J, Ludtke S, Tittmann K: The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem. 2010, 285: 31559-31570. 10.1074/jbc.M110.149955.
PubMed Central
CAS
PubMed
Google Scholar
Maslova AO, Meshalkina LE, Kochetov GA: Computer modeling of transketolase-like protein, TKTL1, a marker of certain tumor tissues. Biochem. 2012, 77: 296-299.
CAS
Google Scholar
Schneider S, Ludtke S, Schroder-Tittmann K, Wechsler C, Meyer D, Tittmann K: A delta38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity. PLoS One. 2012, 7: e48321-10.1371/journal.pone.0048321.
PubMed Central
CAS
PubMed
Google Scholar
Meshalkina LE, Drutsa VL, Koroleva ON, Solovjeva ON, Kochetov GA: Is transketolase-like protein, TKTL1, transketolase?. Biochim Biophys Acta. 2013, 1832: 387-390. 10.1016/j.bbadis.2012.12.004.
CAS
PubMed
Google Scholar
Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nat. 2001, 414: 813-820. 10.1038/414813a.
CAS
Google Scholar
Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ: Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diab. 2003, 52: 2110-2120. 10.2337/diabetes.52.8.2110.
CAS
Google Scholar
Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M: Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003, 9: 294-299. 10.1038/nm834.
CAS
PubMed
Google Scholar
Rabbani N, Thornalley PJ: Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diab Obes Metab. 2011, 13: 577-583. 10.1111/j.1463-1326.2011.01384.x.
CAS
Google Scholar
Berrone E, Beltramo E, Solimine C, Ape AU, Porta M: Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem. 2006, 281: 9307-9313.
CAS
PubMed
Google Scholar
Pekovich SR, Martin PR, Singleton CK: Thiamine deficiency decreases steady-state transketolase and pyruvate dehydrogenase but not alpha-ketoglutarate dehydrogenase mRNA levels in three human cell types. J Nutr. 1998, 128: 683-687.
CAS
PubMed
Google Scholar
Patel MS, Roche TE: Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990, 4: 3224-3233.
CAS
PubMed
Google Scholar
Korotchkina LG, Patel MS: Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem. 2001, 276: 37223-37229. 10.1074/jbc.M103069200.
CAS
PubMed
Google Scholar
Holness MJ, Sugden MC: Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003, 31: 1143-1151. 10.1042/BST0311143.
CAS
PubMed
Google Scholar
Kolobova E, Tuganova A, Boulatnikov I, Popov KM: Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J. 2001, 358: 69-77. 10.1042/0264-6021:3580069.
PubMed Central
CAS
PubMed
Google Scholar
Lu CW, Lin SC, Chien CW, Lin SC, Lee CT, Lin BW, Lee JC, Tsai SJ: Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. Am J Pathol. 2011, 179: 1405-1414. 10.1016/j.ajpath.2011.05.050.
PubMed Central
CAS
PubMed
Google Scholar
Hur H, Xuan Y, Kim YB, Lee G, Shim W, Yun J, Ham IH, Han SU: Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol. 2013, 42: 44-54.
PubMed Central
CAS
PubMed
Google Scholar
Baumunk D, Reichelt U, Hildebrandt J, Krause H, Ebbing J, Cash H, Miller K, Schostak M, Weikert S: Expression parameters of the metabolic pathway genes pyruvate dehydrogenase kinase-1 (PDK-1) and DJ-1/PARK7 in renal cell carcinoma (RCC). World J Urol. 2012, 1-6. 10.1007/s00345-012-0874-5.
Google Scholar
Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL: Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia. 2005, 7: 1-6. 10.1593/neo.04373.
PubMed Central
CAS
PubMed
Google Scholar
McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoung NH, Harris RA, Verma A: Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem. 2008, 283: 22700-22708. 10.1074/jbc.M801765200.
PubMed Central
CAS
PubMed
Google Scholar
Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E: Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 2006, 66: 632-637. 10.1158/0008-5472.CAN-05-3260.
CAS
PubMed
Google Scholar
Michelakis ED, Webster L, Mackey JR: Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008, 99: 989-994. 10.1038/sj.bjc.6604554.
PubMed Central
CAS
PubMed
Google Scholar
Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG: Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer. 2010, 102: 1746-1752. 10.1038/sj.bjc.6605701.
PubMed Central
CAS
PubMed
Google Scholar
Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED: A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007, 11: 37-51. 10.1016/j.ccr.2006.10.020.
CAS
PubMed
Google Scholar
Xie J, Wang BS, Yu DH, Lu Q, Ma J, Qi H, Fang C, Chen HZ: Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol. 2011, 38: 409-417.
CAS
PubMed
Google Scholar
Roche TE, Hiromasa Y: Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci. 2007, 64: 830-849. 10.1007/s00018-007-6380-z.
CAS
PubMed
Google Scholar
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007, 104: 19345-19350. 10.1073/pnas.0709747104.
PubMed Central
CAS
PubMed
Google Scholar
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7: 11-20. 10.1016/j.cmet.2007.10.002.
CAS
PubMed
Google Scholar
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ: Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nat. 2012, 481: 385-388.
CAS
Google Scholar
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nat. 2012, 481: 380-384.
CAS
Google Scholar
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB: Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA. 2011, 108: 19611-19616. 10.1073/pnas.1117773108.
PubMed Central
CAS
PubMed
Google Scholar
Smith CM, Bryla J, Williamson JR: Regulation of mitochondrial alpha-ketoglutarate metabolism by product inhibition at alpha-ketoglutarate dehydrogenase. J Biol Chem. 1974, 249: 1497-1505.
CAS
PubMed
Google Scholar
Starkov AA: An update on the role of mitochondrial alpha-ketoglutarate dehydrogenase in oxidative stress. Mol Cell Neurosci. 2013, 55: 13-16.
PubMed Central
CAS
PubMed
Google Scholar
Butterworth RF, Giguere JF, Besnard AM: Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. alpha-Ketoglutarate dehydrogenase. Neurochem Res. 1986, 11: 567-577. 10.1007/BF00965326.
CAS
PubMed
Google Scholar
Parker WD, Haas R, Stumpf DA, Parks J, Eguren LA, Jackson C: Brain mitochondrial metabolism in experimental thiamine deficiency. Neurol. 1984, 34: 1477-1481. 10.1212/WNL.34.11.1477.
CAS
Google Scholar
Platell C, Kong SE, McCauley R, Hall JC: Branched-chain amino acids. J Gastroenterol Hepatol. 2000, 15: 706-717. 10.1046/j.1440-1746.2000.02205.x.
CAS
PubMed
Google Scholar
Harper AE, Miller RH, Block KP: Branched-chain amino acid metabolism. Annu Rev Nutr. 1984, 4: 409-454. 10.1146/annurev.nu.04.070184.002205.
CAS
PubMed
Google Scholar
Harris RA, Joshi M, Jeoung NH, Obayashi M: Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr. 2005, 135: 1527S-1530S.
CAS
PubMed
Google Scholar
Harris RA, Joshi M, Jeoung NH: Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun. 2004, 313: 391-396. 10.1016/j.bbrc.2003.11.007.
CAS
PubMed
Google Scholar
Chuang DT, Chuang JL, Wynn RM: Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 2006, 136: 243S-249S.
CAS
PubMed
Google Scholar
Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA: Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004, 134: 1583S-1587S.
CAS
PubMed
Google Scholar
Baracos VE, Mackenzie ML: Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr. 2006, 136: 237S-242S.
CAS
PubMed
Google Scholar
De Bandt JP, Cynober L: Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J Nutr. 2006, 136: 308S-313S.
CAS
PubMed
Google Scholar
MacDonald N, Easson AM, Mazurak VC, Dunn GP, Baracos VE: Understanding and managing cancer cachexia. J Am Coll Surg. 2003, 197: 143-161. 10.1016/S1072-7515(03)00382-X.
PubMed
Google Scholar
Goodlad GA, Clark CM: Leucine metabolism in skeletal muscle of the tumour-bearing rat. Eur J Cancer. 1980, 16: 1153-1162.
CAS
PubMed
Google Scholar
Argiles JM, Lopez-Soriano FJ: The oxidation of leucine in tumour-bearing rats. Biochem J. 1990, 268: 241-244.
PubMed Central
CAS
PubMed
Google Scholar
Siddiqui RA, Williams JF: The regulation of fatty acid and branched-chain amino acid oxidation in cancer cachectic rats: a proposed role for a cytokine, eicosanoid, and hormone trilogy. Biochem Med Metab Biol. 1989, 42: 71-86. 10.1016/0885-4505(89)90043-1.
CAS
PubMed
Google Scholar
Argiles JM, Lopez-Soriano FJ: Oxidation of branched-chain amino acids in tumor-bearing rats. Biochem Soc Trans. 1989, 17: 1044-1045.
CAS
PubMed
Google Scholar
Paxton K, Ward LC, Wilce PA: Amino acid oxidation in the tumor-bearing rat. Cancer Biochem Biophys. 1988, 9: 343-351.
CAS
PubMed
Google Scholar
Baracos VE: Regulation of skeletal-muscle-protein turnover in cancer-associated cachexia. Nutr. 2000, 16: 1015-1018. 10.1016/S0899-9007(00)00407-X.
CAS
Google Scholar
Shiraki M, Shimomura Y, Miwa Y, Fukushima H, Murakami T, Tamura T, Tamura N, Moriwaki H: Activation of hepatic branched-chain alpha-keto acid dehydrogenase complex by tumor necrosis factor-alpha in rats. Biochem Biophys Res Commun. 2005, 328: 973-978. 10.1016/j.bbrc.2005.01.047.
CAS
PubMed
Google Scholar
Huang YS, Chuang DT: Down-regulation of rat mitochondrial branched-chain 2-oxoacid dehydrogenase kinase gene expression by glucocorticoids. Biochem J. 1999, 339 (Pt 3): 503-510.
PubMed Central
CAS
PubMed
Google Scholar
Saylor PJ, Karoly ED, Smith MR: Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer. Clin Cancer Res. 2012, 18: 3677-3685. 10.1158/1078-0432.CCR-11-3209.
PubMed Central
CAS
PubMed
Google Scholar
Lau KS, Fatania HR, Randle PJ: Regulation of the branched chain 2-oxoacid dehydrogenase kinase reaction. FEBS Lett. 1982, 144: 57-62. 10.1016/0014-5793(82)80568-1.
CAS
PubMed
Google Scholar
Danner DJ, Wheeler FB, Lemmon SK, Elsas LJ: In vivo and in vitro response of human branched chain alpha-ketoacid dehydrogenase to thiamine and thiamine pyrophosphate. Pediatr Res. 1978, 12: 235-238. 10.1203/00006450-197803000-00016.
CAS
PubMed
Google Scholar