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Abstract

The resurgence of interest in cancer metabolism has linked alterations in the regulation and exploitation of
metabolic pathways with an anabolic phenotype that increases biomass production for the replication of new
daughter cells. To support the increase in the metabolic rate of cancer cells, a coordinated increase in the supply of
nutrients, such as glucose and micronutrients functioning as enzyme cofactors is required. The majority of co-
enzymes are water-soluble vitamins such as niacin, folic acid, pantothenic acid, pyridoxine, biotin, riboflavin and
thiamine (Vitamin B1). Continuous dietary intake of these micronutrients is essential for maintaining normal health.
How cancer cells adaptively regulate cellular homeostasis of cofactors and how they can regulate expression and
function of metabolic enzymes in cancer is underappreciated. Exploitation of cofactor-dependent metabolic
pathways with the advent of anti-folates highlights the potential vulnerabilities and importance of vitamins in
cancer biology. Vitamin supplementation products are easily accessible and patients often perceive them as safe
and beneficial without full knowledge of their effects. Thus, understanding the significance of enzyme cofactors in
cancer cell metabolism will provide for important dietary strategies and new molecular targets to reduce disease
progression. Recent studies have demonstrated the significance of thiamine-dependent enzymes in cancer cell
metabolism. Therefore, this review discusses the current knowledge in the alterations in thiamine availability,
homeostasis, and exploitation of thiamine-dependent pathways by cancer cells.
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Vitamin B1
Thiamine is classified as an essential water-soluble vita-
min requiring continuous dietary intake to support
carbohydrate metabolism. Thiamine is critical for the
activity of four key enzymes in cellular metabolism,
pyruvate dehydrogenase (PDH) and alpha-ketoglutarate
dehydrogenase (α-KGDH) in the tricarboxylic acid
(TCA) cycle, transketolase (TKT) within the pentose
phosphate pathway (PPP), and branched chain alpha-
keto acid dehydrogenase complex (BCKDC) involved in
amino acid catabolism. Structurally, thiamine is com-
posed of a thiazole and pyrimidine ring joined together
by a methylene bridge (Figure 1). Although thiamine is
not the co-enzyme but is converted to the active diphos-
phate, thiamine pyrophosphate (TPP) form intracellu-
larly, circulating plasma levels of thiamine in healthy
individuals range between 10 and 20 nM [1]. The
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reproduction in any medium, provided the or
recommended daily intake (RDI) of thiamine for adult
men and women is approximately 1–1.5 mg/day [2].
Thiamine is found naturally in many foods including
breads, fish, meat, eggs, legumes and milk, as well as
being used in fortification of many processed foods
(Table 1). In addition, many over-the-counter vitamin
supplements contain a significantly large quantity of
thiamine representing 100 to 6,600% of the RDI
(Table 1).
Vitamin B1 homeostasis
The quaternary nitrogen and overall hydrophilicity of
thiamine necessitates a carrier-mediated process for ab-
sorption and cellular uptake (Figure 2). Two transporters
belonging to the SLC19A family, THTR1 (SLC19A2) and
THTR2 (SLC19A3) primarily facilitate the transport of
thiamine. The other member of the SLC19A family,
RFC1 (SLC19A1) facilitates intracellular uptake of re-
duced folate [3]. Although all three transporters share a
high degree of amino acid sequence similarity, RFC1
does not transport thiamine and THTR1/2 has not been
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Table 1 Amount and percent daily value (DV) of thiamine
found in food and supplements

Dietary source Thiamine (mg) % DV**

Natural*

Pork, fresh (3 oz) 0.6 40

Fish (1/2 fillet) 0.3 20

Black beans (1 cup) 0.4 27

Lima beans (1 cup) 0.3 20

Potatoes (1 cup) 0.3 20

Okra (1 cup) 0.2 13

Chicken (1 cup) 0.2 13

Peas (1 cup) 0.2 13

Sunflower seeds (1 cup) 0.7 47

Pistachios (1 oz) 0.2 13

Pecans 0.2 13

Fortified*

General Mills, total raisin bran (1 cup) 1.6 107

General Mills, total corn flakes (1.3 cups) 1.5 100

Breadcrumbs (1 cup) 1.2 80

White rice (1 cup) 1.1 73

Submarine sandwich, with cold cuts
(6" sandwich)

1.0 67

Cornmeal (1 cup) 0.9 60

Supplements

Centrum

Adult 1.5 100

Child (≥4 yrs) 1.5 100

One A Day

Women’s 50+ 4.5 300

Women 1.5 100

Girl Teen 2.3 153

Men’s 50+ 4.5 300

Men 1.2 80

Solaray

Boy Teen 3.8 250

B Complex 7.5 500

Nature’s Way

Vitamin B1 100 6,667

Nature Made

Vegan B Complex 25 1,667

B Complex 15 1,000
*Values obtained from United States Department of Agriculture (USDA).
**The % DV is the percentage of the recommended daily intake (RDI) that each
food/supplement contains. The RDI (1–1.5 mg) is determined based on the
estimated average requirement of thiamine in that only a small percentage
(approximately 2 to 3%) of individuals may experience deficiency [2].
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shown to transport reduced folate or other organic cat-
ions [4,5]. SLC19A2 and SLC19A3 transport thiamine
with Km values of 2.5 μM and 27 nM, respectively [6,7].
Intestinal absorption of thiamine has also been described
to occur by passive diffusion mechanisms at high con-
centrations and also via members of the organic cation
transporter family [8-10]. Recently, a high affinity
carrier-mediated transport mechanism for TPP has been
characterized in intestinal cells but no transporter has
been identified [11].
Upon transport into the cell, thiamine is converted

to the active co-enzyme thiamine pyrophosphate
(diphosphate) by thiamine pyrophosphokinase-1 (TPK1)
(Figure 1) [12]. Phosphorylation of thiamine by TPK1
has been shown to be a significant driving force for
thiamine uptake along with binding to apo-enzymes
[13]. Human TPK1 exists as a homodimer and is
expressed ubiquitously with high levels in the kidney,
small intestine, and testis [12,14]. In addition to TPP,
three other phosphorylated forms have been observed
intracellularly in humans, thiamine monphosphate
(TMP), thiamine triphosphate (TTP), and adenosine
thiamine triphosphate (AThTP) [1]. Although the
physiological functions of TMP, TTP, and AThTP have
not been ascertained, TPP is the only known thiamine
phosphorylate functioning as an enzyme cofactor. De-
phosphorylation of intracellular TPP by thiamine
pyrophosphatase to TMP can be subsequently recycled
back to free thiamine via thiamine monophosphatase
[15,16]. SLC19A1 has been shown to efflux the mono
and diphosphate ester of thiamine [17]. It is unclear if
the dephosphorylation and efflux of thiamine phosphor-
ylates is to regulate intracellular thiamine levels to con-
trol cofactor and non-cofactor functions of thiamine
phosphorylates. Transport of TPP across the mitochon-
drial membrane to support PDH and α-KGDH activity is
facilitated by the thiamine pyrophosphate carrier (TPC),
which is encoded by the SLC25A19 gene [18]. Previously
identified as a deoxynucleotide carrier or DNC, hom-
ology comparisons to yeast TPP transporter and
transport assays have clearly identified TPC as a TPP
transporter [18,19].

Thiamine homeostasis genes and cancer
A difference in the expression of thiamine homeostasis
genes in cancer has been extensively demonstrated for
the thiamine transporter SLC19A3. Using a cDNA array,
Liu et al. demonstrated a decrease in SLC19A3 expres-
sion in breast cancer compared to corresponding normal
tissue [20]. Down-regulation of SLC19A3 was also found
in gastric and colon cancer [21,22]. The decrease in
expression appears to involve epigenetic repression
through hypermethylation and histone deacetylation
of the SLC19A3 promoter [21,22]. An elevation of



Figure 1 Chemical structures of thiamine (vitamin B1; thiamin)
and the active co-enzyme thiamine pyrophosphate (thiamine
diphosphate; TPP).
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SLC19A3 methylation was detected in the plasma of
early- and advanced-stage breast cancer patients as well
as gastric cancer [23]. Recently, our group discovered a
significant increase in the gene expression of TPK1,
SLC19A2, and SLC25A19 in breast cancer tissue samples
compared to normal breast tissue [24]. A slight decrease
in SLC19A3 gene expression was also found in concord-
ance with previous findings. Upregulation of TPK-1,
SLC19A2, SLC25A19 and downregulation of SLC19A3
Figure 2 Intracellular thiamine homeostasis is initially achieved throu
THTR1 and THTR2. Once inside the cell, thiamine is converted to the acti
pyrophosphokinase-1 (TPK1). Thiamine can than function as a cofactor for
carrier (TPC) across the mitochondrial membrane supplies cofactor for activ
dehydrogenase (α-KGDH). Intracellular TPP can also be converted to thiami
subsequently recycled back to thiamine by thiamine monophosphatase (TM
reduced folate carrier (RFC1).
was also verified in several breast cancer cell lines com-
pared to human mammary epithelial cells (hMECs). Al-
though SLC19A3 expression was repressed, transport
assays demonstrated an increase uptake of thiamine in
all breast cancer cell lines tested compared to hMECs.
Using HPLC to quantify thiamine and thiamine phos-
phorylates, the overall thiamine status (total of all
thiamine forms assayed) was significantly greater in two
of the four cancer cell lines evaluated compared to
hMECs. Interestingly, all four breast cancer cell lines
exhibited a high level of intracellular free thiamine com-
pared to TPP. This may suggest an important non-
cofactor role of thiamine in cancer cells or a mechanism
to retain the intracellular thiamine supply to support
binding to newly synthesized apo-enzyme in progenitor
or newly formed daughter cells.
Why tumor cells repress the expression of THTR2 is

still unclear. Decreasing expression of one thiamine
transporter may not impact overall thiamine status,
since transport may still occur via THTR1. This may in-
dicate additional functionality of THTR2 beyond facili-
tating the intracellular transport of thiamine. When
exogenously re-expressing SLC19A3 in gastric cancer
cells, a marked decrease in growth rate was found [21].
Liu et al. demonstrated that THTR2 transfection in
breast cancer cells increased sensitivity to ionizing radi-
ation and cytotoxicity to doxorubicin [21]. However, it is
unclear if the growth-suppressive properties observed in
gh the uptake of thiamine (T) by the thiamine transporters
ve co-enzyme, thiamine pyrophosphate (TPP) by thiamine
the cytoplasmic TKT. Transport of TPP by the thiamine pyrophosphate
ity of pyruvate dehydrogenase (PDH) and alpha-ketoglutarate
ne monophosphate (TMP) by thiamine pyrophosphatase (TPPase) and
Pase). Both TMP and TPP can be effluxed out of the cell through the
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these two studies are mediated through an increase in
cellular thiamine concentrations from enhanced trans-
port capacity or due to a novel pro-apoptotic function of
THTR2. To this end, Liu et al. established the changes
in gene expression when overexpressing THTR2 and
when grown in thiamine-deficient media [25]. Several
genes involved in oncogenesis were upregulated with
THTR2 overexpression that was reduced in the absence
of exogenous thiamine [25]. The increase in oncogenic
genes with THTR2 re-expression would appear to
contradict a role for THTR2 as a tumor suppressor but
highlights a potential role for thiamine and THTR2 ex-
pression in tumorigenesis.
Though the expression of SLC19A3 appears to be re-

pressed in a number of cancers, Sweet et al. demon-
strated that hypoxic exposure resulted in upregulation
or re-establishment of SLC19A3 expression in breast
cancer cells [26]. A corresponding 2-fold increase in
thiamine transport was also observed, suggestive of an
increased requirement for thiamine during hypoxic
stress [26]. The presence of hypoxic microenvironments
in tumors results in an increase in glycolytic activity, pri-
marily controlled by the hypoxia-inducible factor-1 alpha
(HIF-1α) transcription factor. Knockdown of HIF-1α at-
tenuated the upregulation, suggesting that SLC19A3 may
be an associated gene involved in the adaptive metabolic
shift during hypoxic stress [26]. Interestingly, thiamine
was shown to reduce hypoxia-mediated apoptosis of rat
cardiomyocytes [27]. Thus, increasing transport activity
and intracellular thiamine supply may be part of a pro-
survival response during hypoxic stress. In this capacity,
it is unclear whether thiamine is functioning as a cofac-
tor or non-cofactor. Evidence suggests that the mito-
chondrial injury associated with hypoxia can lead to an
imbalance of reactive oxygen species (ROS) in cancer
cells [28-30]. Unchecked, the excess ROS can lead to
cellular apoptosis and necrosis and has been exploited as
a chemotherapeutic approach [31,32]. Thiamine has dir-
ect antioxidant properties as well as being essential for
glutathione production [33-35]. Therefore, clarification
of thiamine’s role in pro-survival responses to hypoxic
stress would be of great significance, given the associ-
ation of hypoxia with poor patient prognosis.

Thiamine and cancer
It has been hypothesized that a Western diet, character-
ized in part by excess thiamine supplementation, may
be a factor for increased cancer incidence compared
to other countries [36]. Thiamine is commonly
supplemented in processed foods and readily consumed
in over-the-counter vitamin and nutritional supplements
in Western countries with generally high cancer inci-
dences. In contrast, Asian and African countries princi-
pally consume food that is high in thiaminase, a natural
thiamine-degrading enzyme, which may reduce thiamine
exposure [36]. Although no direct studies have evaluated
this hypothesis, several have attempted to correlate the
intake of thiamine and other nutritional components
with the risk of cancer. However, like so many other nu-
tritional correlations with cancer incidence, the dietary
intake of thiamine and cancer risk has provided
conflicting results. Using nutritional questionnaires and
a calculated average daily intake level, patients with
prostate cancer consume less thiamine than those with-
out cancer suggesting a negative association with cancer
risk [37]. A 2008 study examined the relationship be-
tween the intake of B vitamins and incidence of breast,
endometrial, ovarian, colorectal, and lung cancer in
women [38]. No correlation was found between intake
of the B vitamins, including thiamine, riboflavin, niacin,
and folate, and the incidence of cancer. Interestingly, re-
duced thiamine intake increased the number of aberrant
crypt foci in the colons of rats fed a sucrose-based diet
[39]. Patients with severe malnutrition have exhibited
Baker’s cyst, osteosarcoma, and submandibular gland
cysts that were cured without recurrence after thiamine
administration, suggesting a role of thiamine deficiency
in tumor development [40].
A limited number of studies and case reports have de-

termined the overall thiamine status in cancer patients.
Clinically, thiamine status is quantified biochemically
using a TKT assay of whole blood samples [41]. This
assay involves measuring the increase in the activity of
the thiamine-dependent enzyme TKT after added TPP.
If deficient in thiamine, exogenous TPP will stimulate
TKT activity, termed the TPP effect. Basu et al. demon-
strated that patients with advanced cancer exhibit
a greater TPP stimulating effect, suggestive of a
reduced thiamine status [42,43]. Similarly, increased
TPP effect was characterized in patients with B-chronic
lymphocytic leukemia, Burkett’s lymphoma, and acute
myelomonocytic leukemia [44,45]. Using an HPLC assay
to directly quantify TPP levels in whole blood, Tsao
et al. demonstrated a significant decrease of TPP in pa-
tients with advanced stages of non-small cell lung cancer
[46]. Although the reason for a decrease in thiamine
status in the blood is unclear, one study noted that can-
cer patients had a higher level of thiamine urinary excre-
tion [42]. The authors suggested that the decrease in
thiamine status might not be due to reduced dietary in-
take of thiamine, but an inability to activate thiamine to
TPP [42]. However, thiamine status is primarily assayed
biochemically in whole blood and limited studies have
quantified thiamine/TPP directly in cancer tissue. The
reductions in peripheral thiamine/TPP may be a conse-
quence of extensive accumulation and/or utilization by
cancer cells. Trebukhina et al. demonstrated that tumor
growth resulted in a depletion of tissue vitamin stores
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and an increase in the TPP-stimulating effect in blood
[47]. During tumor growth, cancer cells maintained a
constant level of TPP while host liver tissue exhibited a
perpetual decline [48]. In post-surgical or autopsy tis-
sues, a 2.5-fold increase in thiamine levels was found in
colon adenocarcinomas relative to un-invaded control
tissue [49]. Overall these studies strongly suggest a pref-
erential accumulation of thiamine into cancer cells that
may be responsible for the alteration in peripheral
thiamine status during malignancy.
Aside from the disease itself, chemotherapeutic drugs

such as 5-fluorouracil (5-FU) and ifosfamide have been
associated with inducing a thiamine-deficient state in pa-
tients [50,51]. In most cases, patients exhibit neuro-
logical impairment similar to the sequelae observed in
thiamine deficiency conditions such as Wernicke’s en-
cephalopathy [51-54]. How these drugs that are structur-
ally unrelated to thiamine are capable of inducing a
deficiency is unknown and may involve distinct mecha-
nisms. No change in thiamine or TPP levels was found
in patients receiving ifosfamide treatment, suggesting
that ifosfamide or a metabolite may inhibit a thiamine-
dependent pathway [51,55]. Accumulation of thiamine
was found to be increased in cancer cells and rat hepato-
cytes when treated with 5-FU and doxifluridine [56].
The enhancement in thiamine uptake by 5-FU in cancer
cells has been associated with an increase in intracellular
Figure 3 Under normal cell metabolism G6P entering the oxidative p
phosphate (R5P) and xylulose 5-phsophate (X5P). Both can be further m
fructose 6-phosphate (F6P) and glyceraldehyde 3-phosphate (G3P) that re-e
production. In cancer, reduced activity of M2-PK leads to an excess of F6P
anabolism. Mediated through transaldolase (TA) and the TPP-dependent en
of nucleotides.
TPP while free thiamine remained constant [56]. Treat-
ment of rats for three consecutive days with 5-FU was
found to result in an increase in the TPP-stimulating
effect on whole blood TKT, and a decrease in liver
thiamine stores [57]. Thus, 5-FU appears to decrease
peripheral thiamine levels by increasing cellular accumu-
lation and conversion to TPP. Although the mechanism
for either drug still needs continued research, high-dose
thiamine is capable of reversing the symptoms of
thiamine deficiency [50,51,53,54].
Self-supplementation vitamin preparations containing

levels of thiamine greater than the RDI are readily ac-
cessible and considered to be safe and harmless for pa-
tients (Table 1). Although the use of thiamine to treat
deficiency-related symptoms attributed to the disease or
therapy is warranted, this is currently done with limited
comprehension of the role thiamine may contribute to-
wards malignant progression. In light of our knowledge
regarding alterations of thiamine homeostasis in cancer,
the impact of thiamine supplementation on cancer growth
has received minimal research attention. In 2001, Comin-
Anduix et al. evaluated the effect of increasing thiamine
supplementation in multiples of the RDI on an Ehrlich as-
cites tumor-mouse model [58]. Their findings indicated a
statistically significant stimulatory effect of thiamine sup-
plementation on tumor growth compared to non-
supplemented controls. Moderate doses of 12.5 to 37.5
entose phosphate pathway (PPP) is converted to ribose 5-
etabolized through the non-oxidative pathway to ultimately form
nters the glycolytic pathway to continue catabolism for ATP
and G3P that can be shunted back into the non-oxidative pathway for
zyme TKT, F6P and G3P are converted to R5P for biosynthesis
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times the RDI had the greatest stimulatory effect, peaking
at approximately 250% greater tumor cell proliferation
with 25 times the RDI. Interestingly, at values above 75
times the RDI, no change was found in tumor cell prolifer-
ation, and a slight decrease was found at 2,500 times the
RDI. This observation suggests that there is a specific
range in which thiamine supports proliferation. A recent
study explored the relationship between a high-fat diet
and thiamine levels on the tumor latency in the Tg
(MMTVneu) spontaneous breast cancer-tumor mouse
model [59]. In this study a normal-fat (NF) diet
contained 10% of the calories from fat while the high-fat
diet contained 60%. Low thiamine (LT) levels were de-
fined as 2 mg of thiamine per 4,057 kcal and normal
thiamine (NT) levels as 6 mg per 4,057 kcal. Tumor la-
tency was significantly longer (295 days) in animals
given a NF/LT diet compared with animals on NF/NT
(225 days). Interestingly,the delay in tumor latency
from LT was abolished when given a high-fat diet.
This demonstrates an important interplay of dietary
constituents on tumor progression that needs further
characterization. Although more research is needed to
confirm and evaluate the role of thiamine on disease
progression, these studies have significant clinical impli-
cations. First, patients requiring thiamine to treat either
chemotherapy or disease-associated deficiency should
receive high-dose thiamine to avoid enhancing tumor
growth. Second, self-supplementation of thiamine by
cancer patients should be avoided as the low-to-
moderate levels of thiamine may contribute to dis-
ease exacerbation.
The importance of thiamine in cancer cell proliferation

is highlighted by studies using the thiamine-degrading
enzyme thiaminase. Liu et al. demonstrated that the
addition of thiaminase into cell culture media containing
thiamine had a significant growth inhibitory effect on
breast cancer cells [60]. Thiaminase reduced ATP levels
in cancer cells, demonstrating thiamine’s key role in sup-
port of cancer cell bioenergetics. Moreover, a pegylated
version of thiaminase was capable of delaying tumor
growth and prolonging survival in an RS4 leukemia
xenograft model [61]. Thiamine’s key role in cancer cell
metabolism and survival is further demonstrated by
studies using the thiamine analog oxythiamine, which
functions as an anti-coenzyme and is capable of redu-
cing in vivo and in vitro tumor cell growth [62-64]. In-
hibition of TKT by oxythiamine reduces DNA and RNA
synthesis through reductions in ribose 5-phosphate
(R5P) synthesis, the pentose carbon backbone of all nu-
cleotides. Oxythiamine also has been shown to induce
apoptosis in rat PC-12 cells via mitochondria-dependent
caspase 3-mediated signaling pathways [65]. The effect
on nucleotide synthesis is highlighted by the prominent
G1 cell cycle arrest induced by oxythiamine in Ehrlich’s
tumor cells [63]. Yang et al. demonstrated that
oxythiamine decreases cell migration and invasion
in vitro, as well as reduced lung metastases in mice
with Lewis lung carcinoma (LLC) [66]. Interestingly,
oxythiamine did not reduce the proliferation of LLC
cells at concentrations that reduced migration and
invasion. The effect of oxythiamine was attributed to a
dose-dependent reduction in MMP-2 and MMP-9
activity and expression. This finding suggests that
thiamine-dependent pathways have other repercussions
on cancer progression in addition to effects on cellular
proliferation.

Thiamine-dependent enzymes in cancer
Transketolase
The PPP and in particular the thiamine-dependent en-
zyme TKT is essential for cancer cells to synthesize large
amounts of nucleic acids needed for rapid cellular
growth (Figure 3). In normal cells, glucose 6-phosphate
enters the PPP and is converted to the nucleotide pen-
tose sugar R5P through the non-thiamine-dependent
oxidative branch. If not utilized for de novo nucleotide
synthesis, R5P continues into the non-oxidative
branch of the PPP where TKT ultimately converts R5P
into fructose 6-phosphate (F6P) and glyceraldehyde
3-phosphate (G3P), which re-enters the Embden-
Meyerhoff pathway. In contrast, a shift to increased
reliance on the non-oxidative PPP for R5P production is
found in cancer cells. Boros et al. demonstrated that
98% of the ribose molecules in H441 lung cancer cells
were derived through the non-oxidative pathway [67].
Similarly, 85% of the ribose RNA in pancreatic adenocar-
cinoma cells was from the non-oxidative pathway [62].
One of the key regulators of glycolysis in cancer cells

is the M2 isoform of pyruvate kinase (M2-PK), which
catalyzes the conversion of phosphoenolpyruvate to
pyruvate. M2-PK is highly expressed in rapidly prolifer-
ating cells and is the predominant isoform in cancer
[68]. Depending on the metabolic needs, M2-PK oscil-
lates between the active tetramer and inactive dimeric
form [69]. The dimer, also known as tumor M2-PK, is
the predominant form of PK found in cancer cells and is
a potential biomarker for cancer detection [70-73]. The
reduced PK activity induces a build-up of phospho-
metabolites such as F6P and G3P that are utilized by
TKT to produce R5P [74]. Recently, metabolic profiling
of gliomas was consistent with an anabolic signature
exhibiting reduced M2-PK activity, a build-up of glyco-
lytic intermediates, and high R5P production [75]. Re-
sistance of chronic myeloid leukemia cells to imatinib is
associated with an increase in M2-PK expression and an
increase in glucose flux into RNA through the non-
oxidative PPP [76,77]. Thus, the alteration in glycolysis
regulation redirects glucose carbon into thiamine-
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dependent anabolic pathways that support rapid prolifer-
ation and cell survival.
Although the TKT reaction is generally considered to

be the result of a single TKT gene, there are two add-
itional TKT isoforms found in the human genome,
termed TKT-like 1 (TKTL1) and TKT-like 2 (TKTL2).
The increase in substrate flux through the non-oxidative
PPP may be supported by an overexpression of TKT
isoforms. Immunohistochemical staining of malignant
tissues, including breast, lung, colonic, urothelial, ovar-
ian, endometrial, gastric and laryngeal tissues, have all
exhibited an overexpression of TKTL1 compared to nor-
mal tissues [78-86]. High expression of TKTL1 is corre-
lated with tumor progression and poor patient prognosis
[78,79,85,87]. TKTL1 silencing has been shown to
suppress growth and proliferation within various tumor
cell lines and xenograft models [88-93]. Ectopically
overexpressing TKTL1 in head and neck squamous cell
carcinoma cells were found to increase cellular prolifera-
tion over vector control [94]. Cells overexpressing
TKTL1 consumed more glucose, produce greater
amounts of G3P, F6P, pyruvate, lactate, and R5P,
Figure 4 The pyruvate dehydrogenase (PDH) complex converts pyruv
pyrophosphate (TPP). In cancer, phosphorylation of PDH by pyruvate deh
leading to a reduction, in pyruvate conversion to lactate by lactate dehydr
reduces phosphorylation and induces apoptosis. TPP binding to PDH has a
why high dose thiamine has anti-proliferative effects in a tumor xenograft
by PDH and is continually catabolized to α-ketoglutarate. The thiamine-dep
converts α-ketoglutarate to succinyl-CoA. Cancer cells exploit glutaminolysi
α-ketoglutarate. Continuation of the TCA cycle results in anabolic activity to
biomass generation.
indicating that TKTL1 promotes an aerobic glycolysis
phenotype. Overexpression of TKTL1 has also been as-
sociated with activation of the pro-oncogenic HIF-1α
under normoxic conditions [94]. The PPP and TKTL1
activity may be important in pro-survival responses by
limiting excess production of ROS when challenged with
oxidative stresses, such as hypoxia. The glycolytic flux
through the oxidative PPP generates nicotinamide aden-
ine dinucleotide phosphate (NADPH), which is essential
in regenerating glutathione and for biosynthetic reac-
tions. Increased oxidative stress in cancer cells was dem-
onstrated to suppress M2-PK activity and enhance flux
through the oxidative PPP with a concomitant decrease
in reduced glutathione levels [95]. Interestingly, knock-
down of TKTL1 expression was found to reduce cellular
NADPH and glutathione levels with a reciprocal in-
crease in ROS-mediated apoptosis [91]. When exposed
to hypoxic stress, reducing TKTL1 expression has
resulted in an increase in ROS generation and cell death
to glioma cells [96]. It is unclear how TKTL1 activity in
the non-oxidative PPP is related to NADPH production
generated within the oxidative pathway. TKTL1 activity
ate into acetyl-CoA when bound to the co-enzyme, thiamine
ydrogenase kinase isoforms 1 to 4 (PDK1 to 4) inactivates PDH,
ogenase A (LDHA). Inhibition of PDK activity by dichloroacetate (DCA)
lso been suggested to inhibit PDK phosphorylation and may explain
model. In the oxidative direction, pyruvate is converted to acetyl-CoA
endent enzyme alpha-ketoglutarate dehydrogenase (α-KGDH)
s to resupply the tricarboxylic acid (TCA) cycle with carbon as
provide precursors for nucleotides, amino acids, and lipids for
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may contribute to NADPH formation by maintaining
continuous flux of glucose carbons through the PPP to
avoid intermediate feedback on enzymatic activity.
Although the importance of TKTL1 in cancer prolifer-

ation, survival, and metabolism is well established, sev-
eral reports have suggested that TKTL1 is incapable of
enzymatically functioning as a TKT. Homology compari-
sons of TKTL1 with TKT have noted a deletion of 38
amino acids within the cofactor and catalytic domain,
suggesting that TKTL1 is incapable of binding to TPP
and carrying out the TKT reaction [97,98]. Schneider
et al. engineered a 38 amino acid deletion pseudo-
TKTL1 (TKTΔ38) mutant from TKT as a model of
TKTL1 to elucidate this issue [99]. No conventional
TKT activity of the TKTΔ38 mutant was detectable
using a coupled spectrophotometric assay for the con-
version of known physiological substrates. Moreover, cir-
cular dichroism and proton nuclear magnetic resonance
(1H-NMR) spectroscopy indicated that the TKTΔ38 mu-
tant had no associated TPP. Using the same TKTΔ38
mutant system, Meshalkina et al. confirmed the lack of
TKT activity in solution and were unable to detect TPP
after acid or heat denaturation extraction methods [100].
However, the lack of activity of purified TKTΔ38 in so-
lution contradicts reports describing the TKT activity of
TKTL1 when exogenously overexpressed or repressed in
cancer cells [76,91,93,94]. Since TKT functions as a
homodimer, it is unclear if the TKTΔ38 mutation alters
dimer formation. Even if TKTL1 is enzymatically in-
active as a homodimer, the expression of TKTL1 in
mammalian systems may influence overall TKT activity
through heterodimer formation with other TKT
isoforms. The lack of TPP binding to the TKTΔ38 mu-
tant does not preclude other thiamine derivatives from
binding. The diphosphate group added to thiamine does
not participate in the catalytic activity and functions pri-
marily to anchor the cofactor into the apo-enzyme.
Other thiamine derivatives with unknown function have
been found intracellularly; these may be able to bind
within the condensed catalytic site of TKTL1 [1]. Thus,
further work is needed to fully understand the biochem-
istry of TKTL1 in mammalian systems.
How thiamine supplementation impacts carbon flux

through the non-oxidative pathway and modulates TKT
activity in cancer cells is unknown. Increases in TKT ac-
tivity may be attributed to an upregulation of enzyme
expression. Additionally, thiamine supplementation may
also stimulate TKT activity by maintaining a high holo-
enzyme fraction by binding to apo-enzymes in progeni-
tor and/or newly generated daughter cells. Recent work
describing the benefit of thiamine supplementation in re-
ducing hyperglycemia-induced vascular damage in diabetes
may provide some insight. Similar to cancer, hyperglycemia
can result in a build-up of phosphometabolites in non-
insulin-dependent tissues such as the vascular endothelia.
This diverts glucose metabolites into the polyol,
hexosamine, advanced glycation, and the diacylglycerol
pathways, which are associated with inducing hypergly-
cemic vascular damage [101]. High-dose thiamine, or the
thiamine derivative benfotiamine, stimulate TKT activity
and decrease production of toxic metabolites [102-104].
The exposure of high-dose thiamine to human umbilical
vein endothelial cells and bovine retinal pericytes cultured
in high glucose has been found to result in an increase in
TKT mRNA expression and TKTactivity [105]. Conversely,
thiamine deficiency was found to decrease TKT mRNA
levels and reduce TKT activity in neuroblastoma cells [106].
Thus, thiamine appears to have both a regulatory and
stimulatory effect on TKTactivity.

Pyruvate dehydrogenase
The conversion of pyruvate to acetyl-CoA takes place
through a series of reactions mediated by the thiamine-
dependent enzyme PDH. Located within the mitochon-
drial matrix, PDH is a multi-component enzyme complex
consisting of three subunits (E1, E2, and E3). As a result of
its location at the junction between glycolysis and the
TCA cycle, PDH activity functions as a critical gatekeeper
for the continued metabolism of glucose (Figure 4). The
activity of PDH is tightly regulated through phosphoryl-
ation by PDH kinase (PDK) [107]. PDK is a family of four
isoenzymes (PDK1, 2, 3 and 4) that function to inhibit
PDH activity through ATP-dependent phosphorylation
[108-110].
In normal cells PDH is active, allowing cells to main-

tain oxidative metabolism to produce ATP and other
components necessary for cell survival and proliferation.
However, PDH activity is suppressed in cancer due to
downregulation and overexpression of PDK isoforms
[111-114]. This truncation of glucose metabolism,
highlighted by preferential conversion of pyruvate to lac-
tate, provides cancer cells with a metabolic advantage to
maintain rapid proliferation [115]. Thus, an increase in
thiamine availability to cancer cells would not be
expected to further increase carbon flux through PDH.
However, PDH expression is elevated with a reciprocal
decrease in PDK isoform expression in tumor-associated
stromal tissue, such as fibroblasts and vascular endothe-
lial cells [114,116]. The increased PDH activity in sur-
rounding tissues has been proposed to assist in the
detoxification of extracellular lactate produced by cancer
cells [116]. This metabolic symbiosis between cancer
cells and stromal tissue may be enhanced through in-
creasing thiamine availability, promoting PDH activity in
normal tissue surrounding tumors.
Interestingly, restoration of PDH activity in cancer

cells has been shown to promote apoptosis and is ac-
tively being assessed as a potential therapeutic strategy.
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One such compound, DCA, has shown considerable
promise in multiple cancer types to inhibit PDK-
mediated phosphorylation of PDH [117,118]. The re-
establishment of glucose oxidation in cancer cells
through restored PDH activity results in an increase in
mitochondrial ROS and cytochrome C release, ultimately
leading to apoptosis [119,120]. Regulation of PDK
activity is mediated through the accumulation of
metabolic products such as ATP, nicotinamide adenine
dinucleotide (NADH) and acetyl-CoA, which stimulate
activity, while pyruvate and ADP inhibit when in excess
[121]. Another regulator of PDH phosphorylation is the
thiamine cofactor TPP, which, when bound to PDH,
reduces the rate and extent of PDK-mediated phos-
phorylation [110]. Thus increasing concentrations of
TPP through thiamine supplementation may be pro-
apoptotic through restoration of PDH activity in can-
cer cells. This may explain why a reduction in tumor
growth was observed with high-dose thiamine supple-
mentation [58]. The potential of high-dose vitamin B1
to reduce cancer cell growth would be of particular
significance and warrants further study.

Alpha-ketoglutarate dehydrogenase
In addition to glucose, cancer cells extensively undergo
glutaminolysis, utilizing glutamine as a carbon and
nitrogen source [122,123]. Upon entering the cell, glu-
tamine is deaminated to form glutamate and ultimately
α-ketoglutarate (α-KG), which serves as an anaplerotic
substrate to replenish the TCA cycle (Figure 4). Located
in the mitochondria, α-KGDH mediates the conversion
of α-KG to succinyl-CoA. With α-KGDH being located
at a critical junction that connects glutaminolysis with
the TCA cycle, understanding the impact of thiamine
supplementation on the functional contribution of α-
KGDH to cancer metabolism is highly desirable. Unfor-
tunately there are no reports to date describing changes
in α-KGDH expression or activity in cancer.
In the oxidative direction, glutamine derived α-KG en-

tering the TCA cycle is a key carbon backbone for the
synthesis of amino acids and nucleotides [122]. Alterna-
tively, glutamine-derived α-KG can undergo reductive
decarboxylation through the TCA cycle, forming citrate
for lipid biosynthesis [124,125]. This reverse TCA carbon
flow would bypass the requirement for α-KGDH activity,
allowing the cell to utilize α-KG unabated by changes in
thiamine availability. It is unclear how α-KGDH activity
is regulated to allow α-KG to move in the reverse direc-
tion but has been described to be triggered during
hypoxic stress [125,126]. Normally, the activity of α-
KGDH is stimulated by low concentrations of calcium
and ADP and inhibited at high NADH and succinyl-
CoA levels [127]. Reduced activity of α-KGDH has been
observed during high oxidative stress that may provide a
regulatory switch that allows for reverse TCA carbon
flow during hypoxia [128]. Several studies have evaluated
the effects of thiamine deficiency on expression and ac-
tivity of α-KGDH with conflicting results. In human
lymphoblasts, fibroblasts and neuroblastoma cells, no
change in α-KGDH gene expression and activity were
observed during thiamine deficiency [106]. In contrast,
in vivo studies reported decreased α-KGDH activities
in the neuronal tissues during thiamine deficiency
[129,130]. Therefore, clarification of α-KGDH regulation
and what impact changes in thiamine availability have
on activity and directional flux of the TCA cycle is
greatly needed in cancer.

Branched chain alpha-keto acid dehydrogenase complex
Valine, isoleucine, and leucine are essential branched
chain amino acids (BCAAs) that can serve as an energy
source as well as precursors for amino acid and
protein synthesis [131,132]. The metabolism of BCAAs
involves transamination to the α-keto acid followed by
irreversible oxidative decarboxylation by the thiamine-
dependent BCKDC to form an acyl-CoA derivative
[132]. The continued catabolic breakdown of BCAA
produces acetyl-CoA (from leucine) and succinyl-CoA
(from valine and isoleucine) that enter the TCA cycle
[132,133]. BCKDC is a multi-component enzyme
consisting of three subunits (E1, E2, and E3) and is lo-
cated in the mitochondria [132]. Similar to PDH,
BCKDC activity is regulated through reversible phos-
phorylation by branched-chain α-keto acid dehydro-
genase kinase (BDK) and phosphatase (BDP) [134].
Loss-of-function mutations and BCKDC deficiencies
are associated with accumulation of neurotoxic α-keto
acids, referred to as maple syrup urine disease (MSUD)
that is characterized by a sweet urine odor [135].
In hypermetabolic states such as exercise, sepsis,

trauma, and cancer, the release of BCAAs from muscle
protein provides a pool of amino acids for the synthesis
of priority proteins and/or an important source of oxida-
tive energy [136-138]. Many cancer patients experience
involuntary weight loss termed cachexia, which is associ-
ated with a loss of skeletal muscle mass [139]. Several
in vivo tumor models have demonstrated similar
cachetic phenotypes. In Walker 256 carcinoma tumor-
bearing rat models, an increase in protein degradation
and leucine oxidation in skeletal muscle is observed
[140,141]. The increase in BCAA oxidation corresponds
with an increase in BCKDC activity in the muscle tissue
of Walker 256 and Morris hepatoma 5123 tumor-
bearing animals [142-144]. Mediators of proteolysis and
BCAA oxidation in muscle tissue of cancer patients may
involve pro-inflammatory cytokines [142,145]. Shiraki
et al. assessed the effect of TNF-α administration on
BCKDC activity in rat liver [146]. In TNF-ɑ-treated rats,
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BCKDC activity was higher than in control due to re-
duced BDK-mediated phosphorylation and inactivation.
Downregulation of BDK mRNA by the glucocorticoid
dexamethasone in rat hepatoma cell lines suggests
hormonal regulation of BCAA metabolism and BCKDC
activity [147]. A recent metabolomics profiling study of
men after androgen deprivation therapy for prostate can-
cer demonstrated a decrease in the products of the
BCKDC reaction, further demonstrating a role for
hormone control of BCAA metabolism [148]. Interest-
ingly, the thiamine cofactor TPP is a potent inhibitor
(Ki = 4 μM) of BDK-mediated phosphorylation,
allowing BCKDC to remain active [149]. High-dose
thiamine supplementation increases BCKDC activity in
thiamine-responsive MSUD patients [135,150]. How-
ever, It is unknown what impact thiamine supplementa-
tion has on BCKDC activity and BCAA metabolism in
cancer patients. Further research is required to establish
if any relationship between thiamine supplementation
with BCAA metabolism and cancer cachexia exists.

Conclusions
The alterations in thiamine homeostasis and increase in
cancer cell proliferation with thiamine supplementation
highlights a significant role for thiamine in cancer. Meta-
bolic studies have provided strong evidence that cancer
cells exploit thiamine-dependent enzymes and pathways
for anabolic, proliferative, and survival purposes. Unfortu-
nately, how thiamine supplementation impacts the meta-
bolic phenotype of cancer cells is currently hypothetical
and is an area of research greatly needed. Refinement of
model systems will be absolutely essential in establishing
the effects of increasing thiamine supplementation on can-
cer metabolism and proliferation. Common cell culture
media contains super-physiological levels of thiamine that
may obscure the importance of thiamine in cancer cell
metabolism when using in vitro models. For instance, high
glucose DMEM contains 10 μM thiamine, which is ap-
proximately 1,000 times greater than circulating plasma
levels. Additionally, an organismal approach for under-
standing the role of thiamine in tumor metabolism will
need to include the interplay with other nutrients, the
tumor microenvironment, and tumor-stromal tissue de-
mands for thiamine. Once connections between thiamine
and cancer cell metabolism are established, new opportun-
ities for therapeutic intervention and dietary modification
to reduce disease progression in cancer patients will
follow.
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