Skip to main content
Fig. 5 | Cancer & Metabolism

Fig. 5

From: Activation of pro-survival metabolic networks by 1,25(OH)2D3 does not hamper the sensitivity of breast cancer cells to chemotherapeutics

Fig. 5

1,25(OH)2D3 induces proteasomal degradation of TXNIP in MCF-7 cells. a The reduction in TXNIP protein levels by 1,25(OH)2D3 (100 nM) in MCF-7 cells is rescued by MG-132 (5 μM) or 2-deoxyglucose (10 mM), but not leupeptin (20 μM). The various molecules were added to the conditioned medium of DMSO- and 1,25(OH)2D3-treated (66 h) MCF-7 cells, for an additional 6 h. b, c ITCH mRNA and protein expression is not markedly influenced by 1,25(OH)2D3. Relative expression was calculated using the ∆∆Ct method with vinculin as the housekeeping gene. Error bars ± SD; n > 3. d Overall protein ubiquitination in MCF-7 cells was not changed by 1,25(OH)2D3 treatment. e Co-immunoprecipitation studies illustrate that the TXNIP-ITCH interaction is not altered by 1,25(OH)2D3 treatment of MCF-7 cells. f Negative regulation of TXNIP protein expression by 1,25(OH)2D3 is observed in MCF-7 cells with knocked-down AMPKα1 levels. g The non-calcemic 1,25(OH)2D3 analogue, calcipotriol (100 nM; 72 h) induces similar effects on TXNIP expression as 1,25(OH)2D3. The cell permeable Ca2+ chelator BAPTA-AM (20 μM) does not hamper 1,25(OH)2D3’s effects on TXNIP expression. BAPTA-AM was added to the conditioned medium of DMSO- and 1,25(OH)2D3-treated MCF-7 cells, 2 h prior to the end of the treatment period (72 h)

Back to article page