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Abstract

Background: Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in
some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been
fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many
aspects of cancer progression including immune surveillance. An expanded understanding of how cancer
metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We
therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an
enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1.

Methods: We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human
breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines
(Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic
levels. The findings were compared with the results obtained by the analysis of public data from The Cancer
Genome Atlas Program.

Results: We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and
metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth
factor beta (TGF-β) play an important role in this relationship. We independently confirmed this relationship in
human cancers by analyzing data from The Cancer Genome Atlas Program.

Conclusions: Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and
revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1
regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-β. The observations provide new
insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and
cancer metabolism.
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Background
The cancer immunotherapy field has been revitalized
with the discovery of immune checkpoints such as
programmed cell death protein-1 (PD-1), and its ligand
(PD-L1, CD274), that act as natural regulators of the
immune system [1]. Along with the expanded interest in
blocking immune checkpoints for cancer immunother-
apy, recent studies have also identified the important
role of metabolism in immune suppression and the
tumor immune microenvironment (TIME) [2, 3]. Cancer
cells can create an immune-suppressive microenviron-
ment through metabolic reprogramming, by changing
the metabolic profile of the tumor microenvironment
(TME) and exerting high metabolic stress on tumor-
infiltrating immune cells that lead to their functional in-
activation [4–7]. High glycolysis and lactate production
[8, 9], glutamine deprivation [10], and changes in the
redox state [11] have been shown to influence the TIME.
PD-L1 levels are, furthermore, directly modulated in
cancer cells by lactate [12], arginine [13], or glutamate
[14], and in immune cells by arginine [13] and glutamine
[15]. As a result, metabolic inhibitors of the glutamate,
glutamine, and arginine pathways are being evaluated in
clinical trials in combination with immune checkpoint
inhibitors with promising outcomes [6].
Most cancers exhibit an aberrant choline metabolism

that is characterized by increased phosphocholine (PC)
and total choline-containing compounds [16, 17]. These
changes have been attributed, in large part, to the over-
expression and increased activity of choline kinase
(Chk)-α, encoded by CHKA, in malignant cells [18, 19].
Chk-α catalyzes the phosphorylation of choline (Cho) to
PC, a major component of phosphatidylcholine (PtdCho)
cycle. PtdCho is the most abundant phospholipid of the
eukaryotic cell membrane and an important source of
signaling molecules [20]. The prognostic and oncogenic
roles of Chk-α have been described in studies with
different tumor types [21–23], relating Chk-α overex-
pression to tumor progression, metastasis, and the
activation of oncogenic signaling pathways [24]. As a re-
sult, Chk-α inhibitors are being evaluated as therapeutic
agents [25, 26], with at least one that has recently com-
pleted a phase I clinical trial [27]. Despite being one of
the most consistently altered metabolic pathway in can-
cers, the relationship between choline metabolism and
immune checkpoints has, to date, not been investigated.
New insights into the interaction between choline me-
tabolism and immune checkpoints may lead to improved
treatment outcomes.
Here, for the first time, we investigated the relation-

ship between choline metabolism and the immune
checkpoint PD-L1, in human triple-negative breast
cancer (TNBC) and pancreatic ductal adenocarcinoma
(PDAC) cells. We focused on TNBC and PDAC because

the outcomes of immune checkpoint inhibitor treat-
ments in these cancers have yet to match the successes
observed in melanoma and lung cancer [28, 29]. PDAC,
especially, has poor survival rates [30]. Chk-α and PD-L1
were downregulated using Chk-α- and PD-L1-specific
small interfering RNA (siRNA). The functional impact
of Chk-α and PD-L1 downregulation on the PD-L1
metabolic interactome was characterized by performing
high-resolution 1H magnetic resonance spectroscopy
(MRS) of cell extracts to quantify changes in metabolic
patterns. We found an inverse dependence between
Chk-α and PD-L1 levels in three of the four cancer cell
lines investigated that was mediated, in part, by
prostaglandin-endoperoxide synthase 2 (COX-2) and
transforming growth factor beta (TGF-β). The multiple
metabolic changes observed when Chk-α and PD-L1
were downregulated individually were largely attenuated
when both were downregulated together, further sup-
porting the important role of Chk-α in the PD-L1 meta-
bolic interactome and vice versa. These results were
independently verified in human cancers by analysis of
data from The Cancer Genome Atlas Program (TCGA)
that confirmed a significant negative correlation between
Chk-α and PD-L1 expression.

Methods
Cell lines
Triple-negative MDA-MB-231 human breast cancer
cells (ATCC Cat# HTB-26, RRID: CVCL_0062, female)
were obtained from ATCC (Manassas, VA, USA). MDA-
MB-231 cells with COX-2 silenced (shCOX2-MDA-MB-
231) were created through the use of a short hairpin
RNA-coding plasmid constructed and placed under the
control of the U6 promoter as previously described [31].
Triple-negative SUM-149 human breast cancer cells
(CVCL_3422, RRID: CVCL_3422, female) were obtained
from Asterand (Asterand Inc., Detroit, MI, USA). Pa09C
(Panc215, RRID: CVCL_E286, female) and Pa20C
(Panc198/RRID: CVCL_E285, male) human pancreatic
cancer cells obtained from primary PDAC were kindly
provided by Dr. Anirban Maitra [32]. All cell lines were
authenticated within the past 6 months at the Johns
Hopkins Genetic Resource Core Facility that follows
ASN-0002-2011, Authentication of Human Cell Lines:
Standardization of STR Profiling guidelines. The STR
profiles of MDA-MB-231 and shCOX2-MDA-MB-231
cells were verified using the ATCC database, and the
STR profile of SUM-149 cells was verified using the
ExPASY Bioinformatics Resource Portal in the
Cellosaurus database [33]. STR profiling of the pancre-
atic cancer cell lines confirmed the absence of cross-
contamination. All the cell lines used in this study tested
negative for mycoplasma within the past 6 months.
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Cell culture
Cells were cultured under standard cell culture incuba-
tor conditions at 37 °C in a humidified atmosphere
containing 5% CO2 and were used from passages 3–7.
MDA-MB-231 cells were maintained in RPMI 1640
medium (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% fetal bovine serum (FBS, Sigma-
Aldrich,). shCOX2-MDA-MB-231 cells were maintained
in RPMI 1640 medium supplemented with 10% FBS and
G418 sulfate (Corning, Corning, NY, USA) at a concen-
tration of 400 μg/mL. SUM-149 cells were maintained in
DMEM/Ham’s F12 50/50 medium (Sigma-Aldrich) with
5% calf serum, insulin (5 μg/ml), and hydrocortisone
(1 μg/mL). Pa09C cells were cultured in RPMI-1640 with
20% FBS, 12.5 mmol/L glucose, and 2 mmol/L glutam-
ine. Pa20C cells were cultured in DMEM (Sigma-Al-
drich) with 10% FBS, 25 mmol/L glucose, and 4mmol/L
glutamine.

RNA interference experiments
All siRNA were purchased from Dharmacon (Lafayette,
CO, USA). Untreated cells and cells treated with nontar-
geted scrambled siRNA (Dharmacon, Catalog Item D-
001810-10-20) or luciferase siRNA (Dharmacon, Catalog
Item P-002099-01-50) were used as controls. Isoform-
specific siRNAs were custom designed using Thermo
Scientific siRNA Design Center (Thermo Scientific,
Rockford, IL, USA). siRNA specific sequences were 5′-
CAUGCUGUUCCAGUGCUCC-3′ for Chk-α, 5′-GAG-
GAAGACCUGAAGGUUCAGCAUA-3′ for PD-L1 #1,
and 5′-CCUACUGGCAUUUGCUGAACGCAUU-3′ for
PD-L1 #2.
Cells at 40 to 50% confluency were transfected with

100 nM of scrambled or luciferase siRNA, and with 50
nM or 100 nM of Chk-α- or PD-L1-specific siRNA for
individual treatments. For combination siRNA treat-
ments, 50 nM of each specific siRNA was used. Cells
were treated with siRNA for 48 h because this incuba-
tion period resulted in the most effective downregulation
of the target genes. D-FECT 4 (Dharmacon, Catalog
Item T-2004-03) was used as the transfection agent for
MDA-MB-231, Pa09C and Pa20C cells, and Lipofecta-
mine 2000 (Thermo Fisher, Waltham, MA, USA, Cata-
log Item 11668019) for SUM-149 cells. All transfections
were carried out based on established protocols [34].

RNA isolation, cDNA synthesis, and RT-PCR
Approximately 0.4 × 106 cells were incubated with dif-
ferent siRNA as previously described [34]. Total RNA
was isolated from cells using the QIAshredder and
RNeasy Mini kit (Qiagen, Valencia, CA, USA) as per the
manufacturer’s protocol. cDNA was prepared using the
iScript cDNA synthesis kit (Bio-Rad, Hercules, CA,
USA). Real-time PCR of cDNA samples was performed

using IQ SYBR Green supermix and gene-specific
primers in the iCycler real-time PCR detection system
(Bio-Rad). All primers were designed using either the
Beacon designer software 7.8 (Premier Biosoft, Palo Alto,
CA, USA) or the publicly available Primer3plus software.
The expression of target RNA relative to the housekeeping
gene hypoxanthine phosphoribosyltransferase 1 (HPRT1)
was calculated based on the threshold cycle (Ct) as R =
2-Δ(ΔCt), where ΔCt = Ct of target gene - Ct of HPRT1 and
Δ(ΔCt) = ΔCt siRNA treated cells - ΔCt untreated cells.

Protein isolation and immunoblots
Approximately 106 cells were incubated with different
siRNA for 24 h, 48 h, and 72 h. Total protein was
extracted using a 1× cracking buffer [100 mmol/L Tris
(pH 6.7), 2% glycerol] containing a protease inhibitor
(Sigma) at 1:200 dilution. Protein concentration was esti-
mated using the Bradford Bio-Rad protein assay Kit
(Bio-Rad). Approximately 100 μg of total protein was
used in each experiment. Expression levels of Chk-α,
PD-L1, and COX-2 were determined by immunoblotting
using a custom-made polyclonal antibody against Chk-α
at 1:200 dilution, a rabbit polyclonal against human PD-
L1 at 1:1000 dilution (GeneTex, Irvine, CA, Cat#
GTX104763, RRID: AB_1240586), and a goat anti-COX-
2 antibody at 1:500 dilution (Cayman Chemical, Ann
Arbor, Michigan, Cat# 100034, RRID: AB_10078977).
Monoclonal anti-GAPDH antibody (1:50,000 dilution,
Sigma-Aldrich, Cat# G8795, RRID: AB_1078991) was
used as a loading control. Proteins were visualized with
HRP (horseradish peroxidase)-conjugated secondary
antibodies using the SuperSignal West Pico Chemilu-
minescent substrate kit (Thermo Scientific).

Prostaglandin E2 concentration
Prostaglandin E2 (PGE2) concentrations were measured
as previously described [35] using the supernatant of
cells under the different treatment conditions. PGE2 en-
zyme immunoassay (EIA) Kit-Monoclonal was used as
described by the manufacturer (Cayman Chemical, Ann
Arbor, MI).

Flow cytometry analysis of PD-L1
Approximately 106 cells were transfected with siRNA for
48 h. The following antibodies were used for flow cytom-
etry: APC mouse anti-human PD-L1 (CD274; clone
MIH1 from BD Pharmingen, San Diego, CA, USA) and
APC mouse IgG1 isotype (Clone MOPC-21, BD Phar-
mingen). Briefly, cells were washed and harvested using
PBS EDTA 5mM buffer. Approximately 0.5 × 106 cells
were suspended in PBA buffer (PBS containing 0.5% bo-
vine serum albumin and 0.02% sodium azide). Cells were
incubated with either PD-L1 or IgG1 antibody in the
dark at 4 °C for 1 h and washed several times in PBA.
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Flow analyses were performed using a FACS Calibur
system (Becton Dickinson Immunocytometry Systems,
San Jose, CA, USA). IgG1 controls were analyzed to
delineate the negative population and to designate the
quadrants. The percentage of positive events and the
mean fluorescent intensity was measured using the Cell
Quest software (Becton Dickinson Immunocytometry
Systems).

Dual-phase extraction and high-resolution 1H MRS
Approximately 2 × 107 cells were incubated with differ-
ent siRNA for 48 h. Water-soluble and lipid fractions
were extracted from the cells using a dual-phase extrac-
tion method [36]. Briefly, pelleted cells were washed
with ice-cold saline, then mixed with 4 mL of ice-cold
methanol and vigorously vortexed. After keeping sam-
ples on ice for 15 min, 4 mL of chloroform was added,
vortexed vigorously, and kept on ice for an additional
10 min. Finally, 4 mL of water was added, and the sam-
ples were vortexed again. All procedures were performed
on ice, and samples were stored at 4 °C overnight for
phase separation and then centrifuged at 15,000×g at
4 °C for 30 min. The aqueous phase containing water-
soluble metabolites was collected [37]. Methanol in the
aqueous phase was first evaporated under nitrogen gas,
and any water remaining in the aqueous phase was
lyophilized. Dried aqueous phase extracts were re-
suspended in 0.6-mL deuterated water (D2O) for MRS
analysis. 3-(Trimethylsilyl) propionic 2,2,3,3-d4 acid so-
dium salt (TSP) dissolved in D2O was used as an in-
ternal standard. Lipid phase extracts were dried under
nitrogen gas stream and re-suspended in 0.6-mL deuter-
ated chloroform and methanol in a 2:1 ratio containing
tetramethylsilane (TMS) 0.05% v/v.
High-resolution 1H MR spectra were recorded on a

Bruker Biospin Avance-III 750MHz NMR (Bruker Bios-
pin Billerica, MA, USA) spectrometer operating at a pro-
ton frequency of 750.21MHz using a 5-mm broad band
inverse (BBI) probe equipped with z-gradient accessories.
For quantitative analysis of metabolites, integrals of reso-
nances were determined and normalized to the number of
cells and compared to the TSP standard (aqueous phase)
or TMS standard (lipid phase) to obtain relative concen-
trations. Spectra were analyzed using the MNova software
(Mestrelab Research, Santiago de Compostela, Spain).

Clinical data collection
Molecular data from the TCGA TARGET GTEx data-
base were retrieved from The UCSC Genome Browser
database (RRID:SCR_005780, https://doi.org/10.1101/
326470) [38]. Data were filtered selecting only samples
from primary, treatment-naive tumors. The downloaded
data included primary disease and gene expression (for
Chk-α and PD-L1). No re-processing or re-normalization

was performed on the data. The mean expression, stand-
ard deviation, and standard error of the mean were calcu-
lated for each tumor type. To investigate the correlation
between the expression levels of Chk-α and PD-L1, we
used the cBioPortal for cancer genomics (RRID:SCR_
014555, https://www.cbioportal.org/) [39], using the mes-
senger RNA (mRNA) expression z-scores (RNA Seq V2
RSEM) with a z-score threshold ± 2.0.

Statistical analysis and reproducibility
Statistical analyses were performed using the GraphPad
Prism 4 software (GraphPad Software, Inc., San Diego,
CA, USA, RRID:SCR_002798). To determine the statis-
tical significance of the quantified data, an unpaired
two-tailed Student’s t test was performed. p values ≤
0.05 were considered significant unless otherwise stated.
To calculate the correlation between variables, the Agos-
tino and Pearson normality test with an alpha value of
0.05 was used to test the normality of the data. If the
data were normal, the Pearson correlation was used as
previously described. If the data were not normal, the
nonparametric Spearman correlation coefficient was
used. All the statistical analyses were performed using
two-tailed tests.

Results
Chk-α and PD-L1 expression are interactively related
To identify the interactive relationship between Chk-α
and PD-L1, we used siRNA to downregulate Chk-α and
PD-L1 in TNBC MDA-MB-231 and SUM-149 cells, and
in Pa09C and Pa20C human PDAC cells [32]. Untreated
cells and cells treated with scrambled or luciferase
siRNA were used as controls. We used a previously vali-
dated siRNA sequence [40] to downregulate Chk-α, and
two separate siRNA sequences, labeled PD-L1 #1 and
PD-L1 #2, to downregulate PD-L1. Changes in mRNA
levels of Chk-α and PD-L1 in siRNA-treated cells, com-
pared to untreated cells, are shown in Fig. 1. A signifi-
cant reduction of Chk-α and PD-L1 mRNA levels was
detected following treatment with the target-specific siR-
NAs, given singly or combined, in the two TNBC cell
lines (Fig. 1a, b) and in Pa09C cells (Fig. 1c). In Pa20C
cells, downregulation of Chk-α was less pronounced (<
50%), and there was no decrease in PD-L1 mRNA levels
with PD-L1 siRNA treatment (Fig. 1d). Importantly, we
found an inverse correlation between Chk-α and PD-L1
mRNA levels. Following Chk-α downregulation, PD-L1
increased by 85 ± 11% in MDA-MB-231, by 80 ± 15% in
SUM-149, and by 70 ± 10% in Pa09C cells (values
expressed as the mean ± standard error of the mean).
Conversely, in MDA-MB-231 and SUM-149 cells, a

significant increase in Chk-α expression of more than
50% was observed following PD-L1 downregulation (Fig.
1a, b). In the PDAC cells, only Pa09C cells showed a
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small but significant increase in Chk-α mRNA expres-
sion with PD-L1 downregulation (Fig. 1c). Since PD-L1
was not downregulated in Pa20C cells, we did not detect
an increase of Chk-α mRNA in these cells (Fig.1d). This
inverse dependence was lost when cells were treated
with a combination of Chk-αand PD-L1 siRNA. To en-
sure that the loss of inverse dependence was not due to
the lower siRNA concentration, we treated MDA-MB-
231 cells with 50 nM Chk-α or PD-L1#1 siRNA alone
and observed similar changes as cells treated with 100
nM siRNA (data not shown). To further establish this
inverse relationship, we analyzed the correlation between
Chk-α and PD-L1 mRNA expression levels in all four
cell lines treated with single siRNA (Supplementary Fig.

1). We found a strong inverse correlation in MDA-MB-
231 (p < 0.0001, r = − 0.763) and SUM-149 (p < 0.0001,
r = − 0.738) TNBC cells. Pa09C PDAC cells also showed
a significant inverse correlation, although weaker than
that observed in the TNBC cell lines (p = 0.001, r = −
0.676). Taken together, these data clearly identified an
interdependence between Chk-α and PD-L1 at the gen-
omic level. This interdependence was not observed when
both genes were downregulated by siRNA.

Changes in Chk-α and PD-L1 mRNA levels are reflected in
protein changes
To determine whether changes in mRNA translated to
changes in protein expression, protein levels of Chk-α

Fig. 1 Chk-α and PD-L1 expression are interdependent. Relative fold change of Chk-α and PD-L1 mRNA expression in a MDA-MB-231, b SUM-
149, c Pa09C, and d Pa20C cells. Fold changes were normalized to untreated cells as marked by the dotted line. Cells were transfected with 100
nM scrambled siRNA, 100 nM luciferase siRNA, 100 nM Chk-α siRNA, 100 nM PD-L1 siRNA #1, or 100 nM PD-L1 siRNA #2, or with a mixture of 50
nM PD-L1 #1 and 50 nM Chk-α siRNA. Values are presented as box and whisker plots, with the middle line representing the mean and the
whiskers representing the maximum to minimum data points, from 5 to 15 independent experiments. Statistical significance was computed from
the ΔCt values. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, compared to untreated cells. #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001, compared to cells transfected
with luciferase siRNA. +p ≤ 0.05, ++p ≤ 0.01, +++p ≤ 0.001, compared to cells transfected with scrambled siRNA (see also Supplementary Figure 1)
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and PD-L1 were measured in MDA-MB-231 cells by
immunoblotting. As shown in Fig. 2a, proteins were
harvested at 24 h, 48 h, and 72 h post-transfection with
Chk-α and PD-L1 siRNA either alone or in combination.
Chk-α and PD-L1 siRNA treatment resulted in an effect-
ive decrease of the targeted proteins when used alone or
in combination. Immunoblots showed increased PD-L1
levels at 72 h following Chk-α siRNA treatment, in good
agreement with previous studies that reported a delayed
increase in PD-L1 protein levels compared with mRNA
levels [41]. Chk-α increased at 24 h following PD-L1
siRNA treatment. This Chk-α/PD-L1 interdependence
was not observed when cells were treated with both
Chk-α and PD-L1 siRNA. Overall, the protein expres-
sion patterns were similar to the mRNA patterns.
To evaluate whether changes in PD-L1 mRNA and

protein levels resulted in changes at the cell surface, we
performed flow cytometry analysis of siRNA treated
MDA-MB-231 cells (Fig. 2b, c and Supplementary Fig. 2).
Treatment with PD-L1 #1 siRNA, either alone or in

combination, was effective in reducing both the percent-
age of PD-L1-positive cells (Fig. 2b) and the mean fluores-
cence intensity (MFI, Fig. 2c), which reflects the total
amount of PD-L1 on the cell surface. Treatment with
Chk-α siRNA resulted in a small, but statistically signifi-
cant increase in the percentage of PD-L1-positive cells
when compared to cells treated with either scrambled or
luciferase siRNA. This was also observed in MFI data
when comparing Chk-α siRNA-treated cells with un-
treated or scrambled siRNA treated cells.
Taken together, these results confirmed that changes in

mRNA resulted in changes in PD-L1 protein expression,
and its localization on the cell surface. The magnitude of
changes in PD-L1 cell surface expression was lower than
anticipated based on the changes in mRNA and total level
of proteins. This is likely due to the already high cell
surface expression of PD-L1 in MDA-MB-231 cells, as
reflected by the 99% of PD-L1-positive cells found in
untreated cells, making any increase difficult to detect.
However, a small but statistically significant increase was

Fig. 2 Changes in Chk-α and PD-L1 mRNA levels are reflected in the total protein levels. a Representative immunoblot assays of Chk-α (top), PD-
L1 (middle), and GAPDH (bottom) at 24, 48, and 72 h of siRNA incubation, respectively. b Percentage of MDA-MB-231 cancer cells expressing PD-
L1 protein on their surface measured by flow cytometry. c The mean fluorescence intensity (MFI) of PD-L1 in MDA-MB-231 cancer cells. MDA-MB-
231 cells were transfected with 100 nM scrambled siRNA, 100 nM luciferase siRNA, 100 nM Chk-α siRNA, or 100 nM PD-L1 siRNA #1, or with a
mixture of 50 nM PD-L1 #1 and 50 nM Chk-α siRNA. Values are presented as box and whisker plots, with the middle line representing the mean
and the whiskers representing the maximum to minimum data points from 3 to 6 independent experiments. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
compared to untreated cells. #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001, compared to cells transfected with luciferase siRNA. +p ≤ 0.05, ++p ≤ 0.01, +++p
≤ 0.001, compared to cells transfected with scrambled siRNA (see also Supplementary Figure 2)
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observed in the total amount of PD-L1 on the surface, as
detected by MFI, in cells treated with Chk-α siRNA.

Consequences of Chk-α and PD-L1 downregulation on
metabolites
To assess whether changes in Chk-α or PD-L1 with siRNA
treatment altered metabolites including choline-containing
compounds, we used high-resolution 1H MRS to analyze
the aqueous and lipid phases of MDA-MB-231 cell extracts.
Significant differences in several metabolites were observed
in MDA-MB-231 cells treated with PD-L1 or Chk-α siRNA
individually, as shown in the representative aqueous phase

spectra in Fig. 3a and the data summarized in Fig. 3b and
Supplementary Table 1. These metabolic changes were
mostly eliminated when both targets were downregulated.
Data from untreated and luciferase siRNA-treated cells
were combined into a single control group for a clearer
presentation, since the metabolic profiles from these cells
were comparable. With PD-L1 downregulation, a signifi-
cant increase of PC was observed, consistent with the
increase of Chk-α mRNA and protein found with PD-L1
downregulation. PD-L1 downregulation also resulted in a
significant increase of glutamate, arginine, lactate, creatine,
glutathione (GSH), oxidized glutathione (GSSG), and ATP.

Fig. 3 Consequences of Chk-α and PD-L1 downregulation on metabolites. a Representative high-resolution 1H MR spectra obtained from the
aqueous phase of MDA-MB 231 cells. Spectra are displayed from untreated cells (black), cells transfected with 100 nM luciferase siRNA (light gray),
cells transfected with 100 nM Chk-α siRNA (orange), cells transfected with 100 nM PD-L1 siRNA #1 (blue), and cells transfected with a mixture of
50 nM PD-L1 #1 and 50 nM Chk-α siRNA (red). All spectra were plotted on the same vertical scale and acquired with identical experimental
parameters. GPC, glycerophosphocholine; PC, phosphocholine; Cho, choline; GSH, glutathione; GSSG, oxidized glutathione; MTA, S-methyl-5′-
thioadenosine. b Metabolic heat map, generated from quantitative analysis of high-resolution 1H MR spectral data of the aqueous phase,
displaying differences in the metabolic profile of MDA-MB-231 cells. The heat map displays metabolites from untreated cells, cells transfected
with 100 nM luciferase siRNA for 48 h, cells transfected with 100 nM Chk-α siRNA for 48 h, cells transfected with 100 nM PD-L1 siRNA #1 for 48 h,
and cells transfected with a mixture of 50 nM PD-L1 #1 and 50 nM Chk-α siRNA for 48 h. Heat maps were created using the MATLAB software
(MATLAB R2012b, MathWorks) to visualize the metabolic patterns. Due to the high dynamic range of metabolites, we normalized the highest
intensity of a metabolite in each of the four groups to 100%. This normalization provides a dynamic range between 0 and 100%, allowing a
better presentation of heat maps. The heat map represents the average of 3–6 replicates per group. The integral area under the peak was
normalized to the number of cells for each sample. TSP dissolved in D2O was used as a quantitative reference in the spectral analysis. *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001, compared to the control group (see also Supplementary Table 1)
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Treatment with Chk-α siRNA resulted in a significant de-
crease of PC demonstrating the functional effects of Chk-α
downregulation that were in good agreement with previous
results [42]. Chk-α downregulation resulted in a decrease of
acetate, and a significant increase of glutamine, glutamate,
aspartate, arginine, pyruvate, lactate, glycerophosphocholine
(GPC), creatine, myo-inositol, taurine, GSH, GSSG, NADP,
ATP, adenosine, and S-methyl-5′-thioadenosine (MTA).
Finally, when both Chk-α and PD-L1 were downregulated
together, most of these metabolic changes were not
observed with the exception of changes in GSH and
myo-inositol.

Consequences of Chk-α and PD-L1 downregulation on
lipids
High-resolution 1H MRS of the lipid phase of MDA-
MB-231 cell extracts detected significant changes in
MRS detectable lipids following Chk-α or PD-L1 down-
regulation. Representative lipid phase spectra are shown
in Fig. 4a with the changes in the lipid profile summa-
rized in Fig. 4b and Supplementary Table 2. Untreated
and luciferase siRNA-treated cells were combined into a
single control group. Chk-α downregulation resulted in
a significant decrease of the total lipid content, as repre-
sented by the methyl signal of fatty acids (-CH3) and the

Fig. 4 Consequences of Chk-α and PD-L1 downregulation on lipids. a Representative high-resolution 1H MR spectra obtained from the lipid
phase of MDA-MB 231 cells. Spectra are displayed from untreated cells (black), cells transfected with 100 nM luciferase siRNA (light gray) for 48 h,
cells transfected with 100 nM Chk-α siRNA (orange) for 48 h, cells transfected with 100 nM PD-L1 siRNA #1 (blue) for 48 h, and cells transfected
with a mixture of 50 nM PD-L1 #1 and 50 nM Chk-α siRNA (red) for 48 h. b Metabolic heat map, generated from quantitative analysis of high-
resolution 1H MR spectral data of the lipid phase, displaying differences in the lipid profile of MDA-MB-231 cells. The heat map displays
metabolites from untreated cells, cells transfected with 100 nM luciferase siRNA for 48 h, cells transfected with 100 nM Chk-α siRNA for 48 h, cells
transfected with 100 nM PD-L1 siRNA #1 for 48 h, and cells transfected with a mixture of 50 nM PD-L1 #1 and 50 nM Chk-α siRNA for 48 h. Heat
maps were created as described above from 3 to 6 replicates per group. Lipids (-CH3), methyl groups of fatty acids; Lipids (-CH2-), methylene
groups of fatty acids (truncated); OOC-CH2, methylene groups at the α position of the carboxylic function; OOC-CH2-CH2, methylene groups at
the β position of the carboxylic function; ARA, arachidonic acid; EPA, eicosapentaenoic acid; PtdEA, phosphatidylethanolamine; PtdCholine,
phosphatidylcholine; (CH=CH-CH2-CH=CH)n, diallylic methylene protons; CH=CH-CH2, methylene groups at the α position of a double bond; CH=
CH, fatty acid double bonds. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, compared to the control group (see also Supplementary Table 2)
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methylene groups at the β position of the carboxylic
function (OOC-CH2-CH2). We also detected significantly
decreased levels of arachidonic acid (AA) and
eicosapentaenoic acid (EPA), docosahexaenoic acid, and
linoleic acid. PD-L1 downregulation, consistent with the
resultant increase of Chk-α, increased PtdCho, phosphati-
dylethanolamine (PtdEA), and the total level of lipids, as
represented by the methylene groups at the α position of
the carboxylic function (OOC-CH2). PD-L1 downregula-
tion also caused an increase in the total level of unsatur-
ated lipids, as represented by the fatty acid double bond
signal (CH=CH), the methylene groups at the α position
of a double bond (CH=CH-CH2) and diallylic methylene
protons (CH=CH-CH2-CH=CH)n. We also detected sig-
nificant increases in linoleic acid, glycerol, sphingomyelin,
and docosahexaenoic acid. Changes in lipids induced with
PD-L1 downregulation were mainly eliminated when both

Chk-α and PD-L1 were downregulated, with the exception
of sphingomyelin, linoleic acid, and unsaturated lipids as
represented by CH=CH, and CH=CH-CH2, suggesting
that these changes were mediated through Chk-α.

Inflammation and the Chk-α/PD-L1 interdependence
To further understand the mechanisms underlying the
Chk-α/PD-L1 interdependence, we evaluated the role of in-
flammation and COX-2 in this relationship. COX-2 and its
metabolite prostaglandin E2 (PGE2) play roles in
inflammation, cancer development, and adaptation to chan-
ging microenvironments [43]. More recently, COX-2 and
PGE2 have been implicated in cancer immunosuppression
[44], and COX-2 and PD-L1 expressions were found to be
correlated in melanomas [45] and lung adenocarcinomas
[46]. Chk-α downregulation increased COX-2 mRNA ex-
pression by approximately 4-fold in MDA-MB-231 cells

Fig. 5 Role of cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) in the relationship between PD-L1 and Chk-α. a Changes of COX-2 mRNA
expression levels, b protein levels, and c PGE2 production in the supernatant of MDA-MB-231 cells with different siRNA treatments. d Changes of
Chk-α and PD-L1 mRNA expression levels at 48 h and e Chk-α and PD-L1 protein levels at 48 h of MDA-MB-231 cells with constitutive low
expression of COX-2 (shCOX2-MDA-MB-231) with different siRNA treatments. siRNA treatments: untreated, transfected with 100 nM scrambled
siRNA, transfected with 100 nM Chk-α siRNA, transfected with 100 nM PD-L1 siRNA #1, and transfected with a mixture of 50 nM PD-L1 #1 and 50
nM Chk-α siRNA. Data in a and d are presented as box and whisker plots, with the middle line representing the mean and the whiskers
representing the maximum to minimum data points from 4 independent experiments. Values in c represent the mean ± SEM from 4
independent experiments. Statistical significance was calculated from ΔCt values. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, compared to untreated cells.
+p ≤ 0.05, ++p ≤ 0.01, +++p ≤ 0.001, compared to cells transfected with scrambled siRNA
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compared to untreated cells, but not compared to
cells treated with scrambled siRNA (Fig. 5a). On the
other hand, PD-L1 downregulation resulted in an over
40-fold increase of COX-2 mRNA, alone or in com-
bination with Chk-α downregulation. Consistent with
the relatively small increase of COX-2 with Chk-α
downregulation, COX-2 protein levels (Fig. 5b) and
PGE2 concentrations (Fig. 5c) did not increase with
Chk-α siRNA treatment, whereas the 40-fold increase
of COX-2 mRNA following treatment with PD-L1
siRNA resulted in an increase of COX-2 protein and
PGE2 concentrations in the cell culture media. To
further understand the role of COX-2 in the PD-L1/
Chk-α dependence, we performed Chk-α and PD-L1
downregulation studies in MDA-MB-231 cells with
COX-2 silenced using COX-2 short hairpin (sh)RNA
(shCOX2-MDA-MB-231). We found that although
Chk-α and PD-L1 siRNA downregulated the target
genes, the increase of PD-L1 with Chk-α downregula-
tion, and the increase of Chk-α with PD-L1 downreg-
ulation was eliminated in cells with COX-2 silenced,
at the mRNA (Fig. 5d) and protein levels (Fig. 5e).
These data indicate that COX-2 is required for the
PD-L1 and Chk-α interdependence.
TGF-β, an inducer of COX-2 [47], has been directly

associated with suppression of the host antitumor im-
mune response [48] and resistance to immune therapies

by increasing tumor cell plasticity [49]. We therefore
analyzed changes in TGF-β expression in response to
Chk-α and PD-L1 downregulation. As shown in Fig. 6,
Chk-α downregulation significantly decreased TGF-β
mRNA expression in TNBC MDA-MB-231, shCOX-2-
MDA-MB-231, and SUM-149 cells. In PDAC cells,
Pa09C showed a less pronounced decrease in TGF-β,
while Pa20C showed the smallest decrease. These alter-
ations matched the range of changes in the increase of
PD-L1 observed with Chk-α downregulation, where
TNBC cells showed the largest increase of PD-L1,
followed by Pa09C cells, and Pa20C cells showed no in-
crease. Conversely, downregulating PD-L1 resulted in an
increase of TGF-β levels, that was most pronounced in
TNBC, lesser in Pa09C cells, and none in Pa20C cells,
matching the levels of PD-L1 downregulation and the
corresponding increase of Chk-α. The increase of TGF-β
in shCOX-2-MDA-MB-231 cells treated with PD-L1
siRNA was clearly attenuated compared to wild-type
cells. When both Chk-α and PD-L1 were downregulated,
no consistent pattern was observed.

Chk-α and PD-L1 interdependence confirmed in human
cancers
To independently confirm the inverse correlation be-
tween Chk-α and PD-L1 in human cancers, we analyzed
the relationship between the tumoral expression of Chk-

Fig. 6 Role of transforming grow factor beta (TGF-β) in the relationship between PD-L1 and Chk-α. Relative fold change of TGF-β mRNA
expression in MDA-MB-231, shCOX-2-MDA-MB-231, SUM-149, Pa09C, and Pa20C cells: untreated, transfected with 100 nM luciferase siRNA,
transfected with 100 nM scrambled siRNA, transfected with 100 nM Chk-α siRNA, transfected with 100 nM PD-L1 siRNA #1, and transfected with a
mixture of 50 nM PD-L1 and 50 nM Chk-α siRNA. Values presented as box and whisker plots, with the middle line representing the mean and the
whiskers representing the maximum to minimum data points from 4 to 7 independent experiments. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
compared to untreated cells. #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001, compared to cells transfected with luciferase siRNA. +p ≤ 0.05, ++p ≤ 0.01, +++p ≤
0.001, compared to cells transfected with scrambled siRNA

Pacheco-Torres et al. Cancer & Metabolism            (2021) 9:10 Page 10 of 16



α and PD-L1 in TCGA. We calculated mean Chk-α and
PD-L1 expression in primary tumor samples from 31
different cancer types (Supplementary Table 3), compris-
ing of more than 9000 samples. We found an inverse
linear correlation between PD-L1 and Chk-α mRNA
levels (Fig. 7, p = 0.001, r = − 0.562). When we analyzed
individual tumor values, irrespective of the tumor type
(Supplementary Fig. 3), we also found a significant in-
verse correlation (p < 0.001, r = − 0.358). When we ex-
amined this relationship within individual tumor types,
we found a statistically significant inverse correlation (p
< 0.001) for 21 out of the 31 tumor types analyzed (Sup-
plementary Table 4). When categorizing receptor status
in the breast cancer group, we found that TNBC showed
the most significant inverse correlation (p = 0.003, r = −
0.31), whereas the correlation was weaker or not statisti-
cally significant in the other breast cancers.
We further analyzed the TCGA samples by ranging

primary tumors according to the mRNA levels of Chk-α
and PD-L1 independently of the tumor type. Tumors
with 10% lowest mRNA levels for Chk-α had signifi-
cantly higher levels of PD-L1 (Supplementary Fig. 4A)
compared with tumors with 10% highest mRNA levels
for Chk-α. Similarly, tumors with 10% lowest mRNA
levels for PD-L1 had significantly higher levels of Chk-
α(Supplementary Fig. 4B) compared with tumors with
10% highest mRNA levels for PD-L1. These results are

in good agreement with our experimental data showing
an increase in PD-L1 with Chk-α downregulation and an
increase in Chk-α with PD-L1 downregulation, further
confirming this relationship in human cancers.

Discussion
Our data identified previously unknown roles of the im-
mune checkpoint PD-L1 in cancer cell metabolic repro-
gramming that are summarized in the schematic in Fig. 8.
These data suggest that many of the metabolic changes
are mediated through Chk-α, COX-2, and TGF-β. We
found that PD-L1 expression significantly increased
following downregulation of Chk-α, an enzyme that is
overexpressed in most cancer cells. Conversely, downreg-
ulation of PD-L1 significantly increased the expression of
Chk-α. This inverse dependence was eliminated when
both genes were downregulated. Similarly, the metabolic
changes detected with individual downregulation of Chk-
α or PD-L1 were significantly attenuated when both genes
were downregulated, identifying the interaction between
these two molecules as necessary for many of the meta-
bolic changes. The interaction between the two molecules
was also eliminated in COX-2-silenced cells. TGF-β
significantly decreased with Chk-α downregulation,
significantly increased with PD-L1 downregulation, and
remained unchanged when both Chk-α and PD-L1 were
downregulated, identifying COX-2 and TGF-β as playing

Fig. 7 Correlation between the mean expression of Chk-α and PD-L1 in primary human cancers. The mean mRNA levels of Chk-α and PD-L1 in
different tumor types showed a statistically significant correlation (p = 0.001, r = − 0.562) according to Pearson’s correlation coefficient. Data were
obtained from the TCGA TARGET GTEx database. Numbers in parenthesis indicate the number of samples for each tumor type. Values are
presented as dots, representing the mean value for each tumor type (color-coded), and the SEM for Chk-α (X-axis) and PD-L1 (Y-axis) (see also
Supplementary Table 3, Supplementary Table 4, Supplementary Figure 3, and Supplementary Figure 4)
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a role in this interactive relationship. The interaction be-
tween PD-L1 and Chk-α was observed in both breast can-
cer cell lines. However, one of the two PDAC cell lines,
Pa20C, did not display this interactive relationship. Al-
though one reason for the difference between the two
PDAC cell lines may be that we were unable to achieve
sufficient downregulation of Chk-α or PD-L1 in Pa20C
cells to the levels achieved in Pa09C cells, the implications
of these data on immune surveillance in different pancre-
atic cancer subtypes should also be considered. While the
use of human cancer cells in immune-suppressed mice
precludes evaluating changes in tumor immune cells in
these xenograft models, techniques such as mass spec-
trometry imaging that allow overlay of metabolomic infor-
mation with immunohistochemical analysis of immune
cells in human cancer tissue may expand our understand-
ing of the role of metabolism and the relationship between
Chk-α and PD-L1 in immune surveillance.
Both Chk-α [17, 19, 50–53] and PD-L1 [54–59] play

pro-oncogenic roles beyond their traditional functions in
PC biosynthesis and in immunomodulation, respectively.
Here, for the first time, we identified the direct involvement
of Chk-α in immunosupression, as Chk-α downregulation
significantly increased PD-L1 levels. Chk-α downregulation
also shifted cancer cells towards a more immunosuppres-
sive profile through metabolic reprogramming, increasing

the production of metabolites such as lactate [12], glutam-
ate [14], MTA [60], or glutamine [61], which have been
linked to increased immune resistance of cancer cells. In a
recent study, lower lactate production by cancer cells led to
lower in vivo extracellular lactate and improved functioning
of T cells [62]. Secretion of glutamate [63] and an excess of
extracellular glutamate in the TME led to T cell dysfunc-
tion [64]. The increase of PD-L1 as a consequence of Chk-
α downregulation, identified low Chk-α as contributing to
immune suppression in cancer cells, different from its role
as an oncogenic protein when overexpressed. Conse-
quently, treatments that target Chk-α [27] may result in
cancer cells escaping immune surveillance.
Downregulation of PD-L1 also resulted in a significant

increase of immune-suppressive metabolites such as lac-
tate [8, 62, 65], glutamate [14, 64], and PC [66], although
the number of metabolites that were altered was fewer
compared to Chk-α downregulation. The significant in-
crease of lipid production and changes in the lipid pro-
file following PD-L1 downregulation may also contribute
to cancer cells escaping immune surveillance. Several
studies have shown that lipids can reprogram tumor-
infiltrating myeloid and T cells towards immunosuppres-
sive and anti-inflammatory phenotypes [67–70]. The
metabolic reprogramming observed following downregu-
lation of PD-L1 and its effects on the TIME merit

Fig. 8 The PD-L1 metabolic interactome intersects with choline metabolism and inflammation. The inverse interdependence between PD-L1 and
Chk-α together with the changes in metabolites with PD-L1 and Chk-α downregulation is summarized. Metabolites displayed in red are
associated with PD-L1 regulation (glutamate, pyruvate, lactate, and glutamine), those in orange are related to creating an immune suppressive
microenvironment (MTA, adenosine), those in purple are associated with escape from immune surveillance (PC) and lipids, highlighted in blue,
skew tumor-infiltrating myeloid cells towards immunosuppressive and anti-inflammatory phenotypes
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further investigation. This metabolic reprogramming
that, based on our data, is mediated through Chk-α, may
assist cancer cells in escaping immune surveillance in re-
sponse to a decrease of PD-L1, or may be a component
of the PD-L1 immune checkpoint program in activating
the immune system. Further studies investigating meta-
bolic reprogramming controlled by the different immune
checkpoints will provide a more comprehensive under-
standing of the interaction between the immune check-
points and metabolism.
PD-L1 downregulation may also create a more im-

munosuppressive profile through increased expression of
TGF-β and COX-2, both of which are related to immune
escape [71] and anti-PD-L1 treatment failure [72]. We
detected increased TGF-β, COX-2, and lipid production
with PD-L1 downregulation. Conversely, TGF-β and
lipid production decreased following increased PD-L1
expression in response to Chk-α downregulation. When
both Chk-α and PD-L1 were downregulated, or when
COX-2 was silenced, these changes were eliminated.
Our data support an active role of both TGF-β and
COX-2 in the dependence between Chk-α and PD-L1.
Although not investigated here, the roles of the inflam-
matory transcription factor NF-kappa-B and HIF regula-
tion in mediating the interactions between Chk-α and
PD-L1 should be investigated in future studies.
COX-2 inhibition downregulated PD-L1 levels in

Lewis lung carcinoma and CMT167 models [73] and in
human melanoma cells [45]. On the other hand, COX-2
inhibition did not impact PD-L1 levels of lung cancer
cells [46], or only affected tumor-associated macro-
phages and myeloid-derived suppressor cells [41], or de-
creased PD-L1 by a COX-2/PGE2 independent pathway
in breast cancer cells [74]. Our data are consistent with
previous observations of TGF-β inversely correlating
with PD-L1 expression in neuroblastoma cells [75].
Furthermore, several preclinical studies have shown that
targeting the TGF-β signaling pathway synergizes with
PD-L1 blocking, improving tumor control and enhancing
anti-tumor immunity [72, 76]. Clinically, it is well estab-
lished that different tumor types use TGF-β production to
evade immune attack [71], and the overexpression of
TGF-β and PGE2 diminished tumor recognition by T cells
[77]. Our results demonstrate, for the first time, that PD-
L1 plays a significant role in COX-2 and TGF-β modula-
tion in cancer cells.
A major unmet need in treatment with immune

checkpoint inhibitors is the lack of a noninvasive tech-
nique to identify patients who may benefit from such a
therapy [78]. Our results suggest that tumors with low
PD-L1 expression may have high Chk-α expression and
consequently high PC and total choline that can be
detected noninvasively with 1H MRS. Future studies
relating total choline detected by 1H MRS in tumors

to PD-L1 expression in biopsy samples may provide
further evidence for the development of the total cho-
line signal as a biomarker to predict for PD-L1 ex-
pression levels [16, 24].

Conclusions
Although the role of immune checkpoints in immune
cell metabolism has been widely studied [6], few data are
available on the regulation of cancer cell metabolism by
immune checkpoints. Immune checkpoint overexpres-
sion has been linked to increased glycolysis and lactate
production in breast cancer cells both in vitro and
in vivo [79]. Targeting protein B7-H3 (CD276) in cancer
cells at the genomic level [79] or PD-L1 with antibodies
in a sarcoma model [56], resulted in decreased glycolysis
and glucose consumption both in vitro and in vivo. We
identified for the first time, a dual role for PD-L1, as
being modulated by and being a modulator of tumor
metabolism. Similarly, we identified for the first time the
role of Chk-α in immunosuppression. This is especially
relevant as this gene is commonly overexpressed in most
cancers [16]. These observations may provide new insights
in the rational design of combinatorial therapies targeting
immune checkpoint inhibitors and cancer metabolism.
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Additional file 1: Supplementary Figure 1. Correlation between the
mean expression of Chk-α and PD-L1 in different cancer cell lines when
treated with siRNA for 48h corresponding to Figure 1. Plot showing a cor-
relation between mRNA expression level of Chk-α and PD-L1 obtained by
RT-PCR of (A) MDA-MB-231, (B) SUM 149, (C) Pa09C and (D) Pa20C cells.
Statistical analysis using Pearson’s correlation coefficient showed a signifi-
cant correlation with P≤0.001 for all except Pa20C cells. Supplementary
Figure 2. Representative flow cytometry histograms for MDA-MB-231
cells treated with siRNA corresponding to Figure 2. Representative flow
cytometry histograms showing signals from control IgG-APC (blue) and
anti-PD-L1-APC (red) antibodies in MDA-MB-231 cells: untreated (A), trans-
fected with 100 nM scrambled siRNA (B), transfected with 100 nM lucifer-
ase siRNA (C), transfected with 100 nM Chk-siRNA (D), transfected with
100 nM PD-L1 siRNA (E) and transfected with a mixture of 50 nM PD-L1
and 50 nM Chk-α siRNA (Chk-α + PD-L1) (F). Supplementary Figure 3.
Correlation between the expression of Chk-α and PD-L1 in primary tumor
tissue among different human cancers corresponding to Figure 7. Individ-
ual levels of Chk-α and PD-L1 measured in different tumor types showed
a statistically significant correlation (P< 0.001, r=-0.358) according to
Spearman's correlation coefficient. Supplementary Figure 4. Compari-
son between Chk-α and PD-L1 in primary tumors with the highest and
lowest values of these genes corresponding to Figure 7. We ranged pri-
mary tumors from the TCGA TARGET GTEx database according to their
mRNA levels for Chk-α and PD-L1. We selected those samples, irrespect-
ive of the tumor type, based on the 10% highest and 10% lowest values
for (A) Chk-α and (B) PD-L1. Supplementary Table 1. Mean values of
water-soluble metabolite concentrations in MDA-MB-231 cells corre-
sponding to Figure 3. Values were generated from the quantitative ana-
lysis of high-resolution 1H MR spectra obtained at 48h from the aqueous
phase of MDA-MB-231 cells that were: untreated, transfected with 100
nM luciferase siRNA (Luciferase), transfected with 100 nM Chk-α siRNA
(Chk-α), transfected with 100 nM PD-L1 #1 siRNA (PD-L1) and transfected
with a mixture of 50 nM PD-L1 and 50 nM Chk-α siRNA (Chk-α + PD-L1).
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Values represent Mean (mM /cell) ± SEM from 3-6 independent experi-
ments. GPC: glycerophosphocholine, PC: phosphocholine, Cho: choline,
GSH: glutathione, GSSG: oxidized glutathione, MTA: S-methyl-5′-thioade-
nosine. Supplementary Table 2. Mean values of lipid metabolites in
MDA-MB-231 cells corresponding to Figure 4. Values were generated
from the quantitative analysis of high-resolution 1H MR spectra obtained
at 48h from the lipid phase of MDA-MB-231 that were: untreated (con-
trol), transfected with 100 nM luciferase siRNA (Luciferase), transfected
with 100 nM Chk-α siRNA (Chk-α), transfected with 100 nM PD-L1 #1
siRNA (PD-L1) and transfected with a mixture of 50 nM PD-L1 and 50 nM
Chk-α siRNA (Chk-α + PD-L1). Values represent Mean (a.u.) ± SEM ob-
tained from 3-6 independent experiments. Lipids (-CH3): methyl groups
of fatty acids, Lipids (-CH2-): methylene groups of fatty acids, OOC-CH2:
methylene groups at the α position of the carboxylic function, OOC-CH2-
CH2: methylene groups at the β position of the carboxylic function, ARA:
arachidonic acid, EPA: eicosapentaenoic acid, PtdEA: phosphatidylethanol-
amine, PtdCholine: phosphatidylcholine, (CH=CH-CH2-CH=CH)n: diallylic
methylene protons, CH=CH-CH2: methylene groups at the α position of a
double bond, CH=CH: fatty acid double bonds. Supplementary Table
3. Mean values for Chk-α and PD-L1 expression for 32 different tumor
types corresponding to Figure 7. Values were extracted from the TCGA
public database and expressed as the Mean ± SEM. The number of tumor
samples for each tumor type available in the TCGA data base are also
presented. Supplementary Table 4. Correlation coefficients between
PD-L1 and Chk-α expression in different tumor types corresponding to
Figure 7. Correlation coefficients were calculated used the c-bioportal,
and by selecting mRNA Expression Z-scores (RNA Seq V2 RSEM) with a z-
score threshold of ±2.0. Statistically significant correlations (p<0.01) are
highlighted in bold.
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