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Abstract

Background: Metabolomics is gaining popularity as a standard tool for the investigation of biological systems. Yet,
parsing metabolomics data in the absence of in-house computational scientists can be overwhelming and time-
consuming. As a consequence of manual data processing, the results are often not analysed in full depth, so
potential novel findings might get lost.

Methods: To tackle this problem, we developed Metabolite AutoPlotter, a tool to process and visualise quantified
metabolite data. Other than with bulk data visualisations, such as heat maps, the aim of the tool is to generate
single plots for each metabolite. For this purpose, it reads as input pre-processed metabolite-intensity tables and
accepts different experimental designs, with respect to the number of metabolites, conditions and replicates. The
code was written in the R-scripting language and wrapped into a shiny application that can be run online in a web
browser on https;//mpietzke.shinyapps.io/autoplotter.

Results: We demonstrate the main features and the ease of use with two different metabolite datasets, for quantitative
experiments and for stable isotope tracing experiments. We show how the plots generated by the tool can be interactively
modified with respect to plot type, colours, text labels and the shown statistics. We also demonstrate the application
towards "*C-tracing experiments and the seamless integration of natural abundance correction, which facilitates the better
interpretation of stable isotope tracing experiments. The output of the tool is a zip-file containing one single plot for each
metabolite as well as restructured tables that can be used for further analysis.

Conclusion: With the help of Metabolite AutoPlotter, it is now possible to simplify data processing and visualisation for a
wide audience. High-quality plots from complex data can be generated in a short time by pressing a few buttons. This offers
dramatic improvements over manual analysis. It is significantly faster and allows researchers to spend more time interpreting
the results or to perform follow-up experiments. Further, this eliminates potential copy-and-paste errors or tedious repetitions
when things need to be changed. We are sure that this tool will help to improve and speed up scientific discoveries.
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Background

Data analysis for metabolomics can typically be sepa-
rated into two parts. In the first part, often termed as
pre-processing, the raw measurements are converted
into readouts. This includes reading the mass-
spectrometer raw files, peak detection and integration,
metabolite identification and alignment of metabolites
over several measurements [1, 2]. In the second part of
the analysis, researchers need to convert readouts into
biological insights. While there are tools to carry on the
identification and quantification of metabolites [3], we
are still missing user-friendly interfaces to perform sta-
tistics and visualise the data. These tasks typically in-
clude the association of measurements to conditions,
grouping and averaging of replicate measurements, cor-
rection of the intensities by cell counts or internal stan-
dards and finally visualising the results.

It is difficult to define a universal solution due to dif-
ferent data structures generated with different analytic
tools, different experimental setups and finally different
personal visual preferences. As a consequence, we found
others and ourselves repeating similar steps manually
over and over again, extracting data for selected metabo-
lites to be imported in graphic tools such as GraphPad
Prism or plotting metabolite intensities with Microsoft
Excel. However, manual data processing is extremely
time-consuming and prone to errors.

To automate these steps, we developed Metabolite
AutoPlotter, a web-based application for the analysis of
metabolomics data, conveniently automatizing the steps
in metabolomics data processing, leading to well-
structured tables and graph outputs for every metabolite
in the dataset. The graphs can be customised with re-
gard to plot type, colours, text labels and size among
other features. Additionally, statistical tests can be con-
ducted and the results added to the graphs. The most
important features are described in detail in the follow-
ing sections.

Methods

Implementation

Metabolite AutoPlotter is written in R [4] and wrapped
into a web-application with the “shiny” package [5]. Data
manipulation is realised mainly with tools from the
“tidyverse” package [6], the plotting is realised with
“ggplot2” [7] and for the individual data points, “ggbees-
warm” is used. For reading and writing Excel files,
“readx]” and “writex]” are used; for creating the report
file, we use “officer”. Statistics is implemented with
“ggpubr”, containing a wrapper for the “ggsignif” pack-
age. Summary pages are created using “gridExtra”, the
palettes are used from the “pals” package and colour
blind simulation is performed using “colorspace”. The
appearance of the application is improved with
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“shinythemes”, “shinycssloaders”, “shinyWidgets” and
“shinyalert”. For zipping of the results, the “zip” package
is used. All packages and the R-version are routinely
updated.

Generation of metabolite data for a quantitative
experiment

For the quantitative demo data, we extracted intracellu-
lar metabolites from 5 different tissues (brain, liver, kid-
ney, spleen and pancreas) from a '*C-tracing experiment
with 3C-methanol in four different mice [8]. Metabolite
extraction and LC-MS measurement were performed as
described in [9]. Only the unlabelled metabolites are
used here, to show the differences between the tissues.
Peak areas were extracted using TraceFinder-software
(Thermo Fisher), by comparing the mass to charge ratio
(m/z) and the retention time against a custom library
prepared with authentic standards. The dataset contains
99 metabolites measured for 3 time-points in 4 bio-
logical replicates.

Generation of metabolite data for tracing experiment
This dataset was generated exclusively for the purpose of
showing the tracing features of this tool. For this, HCT116
cells were incubated for four different time points (1 h, 3
h, 6 h and 24 h) in Dulbecco’s modified Eagle’s medium
(DMEM) either containing u-13Ce-Glucose (17mM) or
u-13C5—glutamine (2 mM) in triplicate wells. Intracellular
metabolites were extracted and measured by LC-MS again
as described in [9], and 38 metabolites were extracted
using TraceFinder-software (Thermo Fisher).

Implementation of default colours

As default colours for the plots, we use the schemes de-
veloped by Paul Tol (https://personal.sron.nl/~pault/)
and their implementation in the pals-package. This de-
livers a harmonic appearance while simultaneously
maintaining a fair amount of separation for people with
colour-impaired vision. For quantitative experiments,
the user can define its own colours in the sample table
either in hex-notation (e.g. #fFFAA25) or using the pre-
defined colour names for R. For tracing experiments, the
colours are hardcoded to guarantee an identical appear-
ance between experiments. Here, the user can choose
between the short scale, a modification of the tol-
rainbow, with saturation and value increased by 20%,
and the long scale is based on the stepped rainbow.

Results

Data import

Metabolite AutoPlotter reads quantified data containing
the identified metabolites and their intensities, generated
elsewhere, e.g. with manufacturer’s software or other
software tools for peak detection and metabolite
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identification. Processed data need to include at least the
metabolite names, unique sample IDs (as filenames) and
the intensity (area or height) and can be imported as
Microsoft Excel format (xls/xlsx), comma-separated files
(csv) or other text formats. We implemented direct im-
ports for the 2 most common outputs generated in our
institute for LC-MS data (TraceFinder & Compound
Discoverer, both from Thermo Fisher Scientific). Alter-
natively, data can be imported in a more generalised
way either as a list or as a matrix, to allow the im-
port of data generated with other software tools. A
description of the data structures and expected col-
umns is shown in Table 1.

Adding sample descriptions

Figure 1, top, illustrates the AutoPlotter workflow. Once
the data was imported, it is converted to the internal
data structure. A template for the sample table is gener-
ated and downloaded from within the app in order to
define the conditions and the main properties used for
the plotting. This includes the names of conditions
shown on the plots, the order of the conditions and their
colours. Samples can be normalised at this stage by cell
counts or protein content. AutoPlotter offers two differ-
ent strategies to do so. For the “absolute correction”, the
metabolite intensities (peak areas) are divided by the
supplied correction value. This can be used to express
the results as “peak area per million cells” or “peak area
per microgram of protein”, and is particularly useful
when absolute quantities are used. Alternatively, a “rela-
tive correction” can be used. Here, the metabolite inten-
sities are divided by the given correction value and then
multiplied with the average of all correction values. As a
result, the dimension of the metabolite intensities is
maintained and the samples are equalised to similar

Table 1 Data structure for the different input layouts
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levels. Consequently, this strategy is not recommended
when differences between samples should be maintained,
for example when different cell lines are used, differing
in size and therefore in the harvested sample counts.

Further, different levels of replicates as measurement
(~technical) replicates and experimental (~biological)
replicates can be specified in the sample descriptions. In
the latter case, the measurement replicates for each ex-
perimental replicate will be averaged and the averages
will be used to present the data. Once the edited sample
table is uploaded, it is saved together with the cleaned
input data in the folder “Inputs” contained in the result
folder. With these two files, the processing can be re-
peated at any time in the future.

Data processing

The philosophy of the tool is to represent the uploaded
data as original as possible. Missing values can occur in
metabolomics experiments as a result of metabolites be-
ing absent in some samples or being present with a con-
centration below the detection limit. Consequently,
missing values occur more frequently for low abundant
compounds. Nevertheless, missing values can also ap-
pear independent of the concentration due to problems
with the peak integration, as m/z not matching within
the defined mass error due to coeluting compounds or
retention time shifts outside the allowed window. Miss-
ing values are explicitly accepted by the tool and are fur-
ther treated as “missing”, we do not impute missing
values or fill missing values with zeros. Inputs as empty
cells, “NA”, “NaN”, “N/F” and “N/A” are treated as miss-
ing. For the “Compounds in Columns” input, addition-
ally, zeros can be treated as “missing” or kept as zero
and hence as explicit missing. For “Compound Discov-
erer” or “Matrix” inputs, a threshold can be defined that

Input style Layout File types Essential columns Additional columns
Tracefinder  Both, metabolites and samples csv or xls(x) Compound‘, Filename, Area Actual RT?, Formula®*3,
along rows Adduct?, m/z (Apex)?, m/z
(Delta (ppm))> or m/z (Delta)?
Compound  Metabolites in rows, samples in ~.csv or XIs(x) Compound, RT [min]***, Filename as: "Area: "+ Molecular Weight**> Mass®,
Discoverer columns "filename"+".raw (F'number")" or "Norm. Area: ~ Formula®
"+ "filename"+"raw (F'number")"
Compounds  Samples in rows (sample names —.csv or xIs(x) Samples in first column, name of column is Not allowed as they will be
in Columns in first column) metabolite names ignored interpreted as metabolites
in first row (column 2-n)
Other - List ~ Both, metabolites and samples csv, xlIs(x), tab-, 4 columns in defined order, describing the Will be ignored
along rows comma, Metabolite!, RT®, Filename and Area
o ) semicolon ) - : )
Other - Metabolites in rows, samples in ) First 2 columns containing Metabolite” and Not allowed as they will be
i - separated files .8 . o . :
Matrix columns (inverse of compounds RT® , following columns containing the interpreted as metabolites

in columns)

samples

All imports need to have (only) one header row containing the column names. When Excel files are used, the data are expected in the first sheet. Remarks: 1-
cannot contain empty values or duplicated names. 2-used for metabolite summary. 3-used for subtracting naturally occurring isotopes. 4-used to combine
compound names with retention time (RT) as compound name typically contains duplicates. 5-used to label unknowns. 6-column RT can be empty but needs to
be present. 7-Compounds can contain duplicate names as long as RT is supported to merge names and RT
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need to be reached; below that threshold values are
treated as missing. In line with this, we do not normal-
ise, scale or transform the data. Although this is required
for some further analysis (principal component analysis
(PCA), independent component analysis (ICA), partial
least square discriminatory analysis (PLS-DA) or cluster-
ing), this is not needed to show the data. The presence
of missing values helps to identify poor measurements
or noisy metabolites, while the addition of missing value
imputation may gain false confidence.

At the step of data processing, metabolites can be nor-
malised with internal standards. Normalisation can be
performed before or after the external normalisation.
The first case is suited for standards added during the
extraction step, to compensate for variations during
sample preparation and measurement. The latter case is
useful when the intensities should be normalised to a
detected metabolite. Similar to the external normalisa-
tion values can be normalised absolutely or relatively.
Multiple metabolites can be selected and will be
summed up, consequently, the normalisation is more af-
fected by highly abundant metabolites. When there is
not a single metabolite serving as a representative for
the other compounds, samples can additionally be nor-
malised with the sum of all peak areas (“Total Peak
Sum”).

To further evaluate the quality of the data, we also in-
clude a quality control feature to evaluate the perform-
ance of the replicate measurements. For this, the relative
fold changes for each metabolite between the replicates
of the same condition are calculated and shown for all
metabolites together. The means of all the metabolites
should be centred around 1 when the replicates perform
comparably. This strategy evaluates the quality of the
samples based on all detected metabolites, is independ-
ent of outliers in single metabolites and missing values
and works well for a small number of replicates. Samples
that differ dramatically at this stage can be identified
and removed conveniently before performing further
analysis.

After the data are processed, structured tables are
exported together with the plots. These tables can be
used for further processing, statistical analysis or to im-
port the data into other visualisation tools, e.g. Graph-
Pad Prism. A detailed explanation of the exports is
included in Supplement File 1, and is exported together
with the results.

Application to quantitative experiments

The most important and unique feature of the tool is to
automatically generate one single graph for every com-
pound in the dataset. As this highly depends on the user
preferences, we included an interface that allows an
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interactive customisation of the plot design (Fig. 1,
bottom).

Four different plot types are currently included in the
application: bar plot, violin plot, box plot, and univariate
scatterplots (Fig. 2a—c and e). The bar plots show the
mean and the standard deviation, the same applies to
the scatterplots that additionally show the individual
measurements. The violin plots show the density distri-
bution and the median, the box plots show the median,
the 25th and 75th percentiles and the lowest/highest
value within 1.5 times inter-quartile range from the box.
Violin plots and box plots only make sense when enough
data points are present, so they are only available when
5, respectively 10 replicate measurements per condition,
are present in the dataset. When technical and experi-
mental replicates are present, the user can additionally
generate 2 different plots that allow for the comparison
of the performance within the replicates (Fig. 2d, f).

Plot personalisation

All plots can be further modified beyond the default set-
tings (Fig. 2g—k). Already with the sample descriptions,
the order of the conditions and their colours can be de-
fined (Fig. 2, right vs. Fig. 2, left). Bar, box and violin
plots can be generated with outlined colour instead of
filled colour to reduce their weight and amount of ink
used (Fig. 2h, i). Additionally, the individual data points
can be overlaid over each of the plots (Fig. 2h). Further-
more, the dimensions of the plots (width and height),
their resolution and the output format (jpg, pdf, png,
svg) can be defined. Also, the text elements can be al-
tered, this includes the sizes, the direction of the text
along the x-axis, the axis titles for x- and y-axes. Add-
itional text can be added on the left or the right side of
the compound names to add some experimental descrip-
tions. Simple statistics can be added as well; this can be
either multiple pairwise comparisons or comparisons
against one reference group, as t test (expecting equal
variances) or Wilcoxon test. The results of the statistics
can be shown as symbols or numeric values (Fig. 2i, j).

Once the design is defined, the user can click on “Gen-
erate all plots!” and a plot for every metabolite is saved
as an image file with the metabolite name as the file-
name. Characters not allowed in filenames (e.g. ;, ;, <, >)
are converted automatically during this step. All results
(the plots and the tables) are packed into a zip file that
can be downloaded by the user.

Bar plots belong to the standard repertoire for data
visualisation, as they are easily understood by anyone
and can be effectively used to screen for differences due
to the weight of the different colours. However, we want
to point out that they are probably not the best repre-
sentation in all cases. First of all, the data usually do not
show continuous counts from zero to the end value, but
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multiple numbers with a similar distance away from
zero. Secondly, they highly compress the data, hiding
some underlying features of the data sets [10, 11].
Metabolite AutoPlotter includes different features to
overcome this limitation, e.g., by overlaying the individ-
ual data points or using violin plots to better represent
the distributions [12].

Application to tracing experiments

Stable isotope tracing experiments can be processed and
visualised as well. Figure 3 shows the results of a *C-
tracing experiment performed exclusively to show this
feature. For this, HCT116 cells were cultivated in
DMEM supplemented with either u-'*C-glucose or
u-"*C-glutamine for 1 to 24 h and intracellular metabo-
lites were extracted and measured by LC-MS. The isoto-
pologues for tracing experiments should be supplied as
“metabolite +1”, "metabolite +2” and so on. Metabolites
up to M+30 can be processed with the application, even

though so many masses cannot be shown efficiently.
During data processing, the isotopic information is ex-
tracted from the metabolite names and all isotopologues
are grouped and shown as stacked bars for each condi-
tion, indicated by M+0 for the unlabelled species and
M+1, M+2, for isotopologes with a mass-shift of one re-
spectively two Dalton. These plots can be shown either
in absolute intensities (peak areas, Fig. 3a) or in relative
intensities (summed up to 100%, Fig. 3b). Both represen-
tations have advantages regarding data interpretation.
They can be generated in a single run by repeating the
plotting step. Additionally, two different colour scales
can be used. The short scale ranging to M+7 is sufficient
for showing the central carbon metabolism (Fig. 3a).
The longer gradient is based on a stepped rainbow with
5 colour blocks in 3 shades, being able to show up to
M+15 allowing an instant overview over the number of
isotopologues (Fig. 3b). As an example, the high number
of isotopologues in NAD+ cannot be resolved with the
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Fig. 3 lllustration of tracing experiments processed and visualised with Metabolite AutoPlotter. Plots show the incorporation of '>C either from
glucose or from glutamine (highlighted on the left side) into some intracellular metabolites of HCT116 cells at different time points ranging from
1 to 24 h. Top: Absolute intensity plots and short colour scale, showing the peak area (arbitrary units). Bottom: relative intensity plots and full

colour scale, showing the relative peak area (percentage)
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short colour scale, while the long scale reveals that it
contains mainly M+5 and M+10, from incorporating
ribose-phosphate. Figure 3 further shows what can be
expected from biology: Some metabolites are labelled ex-
clusively from glucose or glutamine, whereas both
tracers contribute to tracing in the TCA-cycle interme-
diates. With the time course progression, the labelling in
most of the metabolites increases as well.

Natural isotopic abundance correction

The presence of multiple stable isotopes (as >C, °N,
35, 180, ?H) in the metabolites can make the interpret-
ation of stable isotope tracing experiments cumbersome.
The heavy isotopes introduced by the tracing experiment
need to be separated from isotopes being present natur-
ally. The carbon-13 isotope occurs with a frequency of
approximately 1.1%. For a 3-carbon molecule like pyru-
vate, the naturally occurring M+1 isotopologue has a fre-
quency of about 3%, and therefore, the natural
abundance of **C makes not much of a difference. How-
ever, for a 10-carbon molecule such as adenosine tri-
phosphate (ATP), the M+1 isotopologue will be found
with an intensity of 10% relative to M+0 and should not

be neglected. It is therefore very important that re-
searchers correct the natural abundance of stable iso-
topes when performing stable isotope tracing
experiments, particularly for large molecules. Often re-
searchers perform experiments with no tracer to show
the naturally occurring components. This is however an
unnecessary burden given that we can computationally
correct for the natural abundance of stable isotopes. We
would argue that the computational correction is actu-
ally more precise given that the natural abundance of
stable isotopes is very consistent across samples.
AutoPlotter provides an option for natural abundance
correction by integrating the AccuCor package [13]. The
user needs to supply the sum-formulae for the un-
labelled metabolites, the type of the tracer used (**C,
>N or ?H) and its isotopic purity. If the sum formulae
are not already included in the inputs, they can be
uploaded later. Figure 4 shows a comparison before and
after the correction for ATP (C;oH;sN5013P3) and gluta-
thione (GSH) (C1oH17N304S). In both metabolites, there
is a high proportion of M+1 visible (dark blue) and also
M+4 (yellow) in ATP. This complicates the interpret-
ation as the reader needs to subtract these contributions
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in its head, which is impossible without an unlabelled
reference sample. After the correction (Fig. 4, right
panels) both contributions disappear, revealing an un-
labelled state for ATP after '*C-glutamine tracing and
GSH for the first 6 h of '*C-glucose labelling.

Data safety

The application is hosted at shinyapps.io to benefit from
the high-quality standards of the RStudio-team. Users
should be aware that the environment is not HIPAA
compliant, so confidential data (e.g. non-anonymised pa-
tient information) should be removed from the data
prior to submission. Beyond that, we make sure that the
uploaded data are safe. Intermediary data are stored
transiently in a temporary folder on the server, after the
session closes data will be deleted. This can also be done
by the user pressing a button. We do not have access to
the temporary folders; neither do we have the interest or
time to check other researchers’ results. Once we pub-
lished the source code, users can run the tool locally or
set up their own servers.

Limitations and performance

Whilst we worked hard to design the tool to be as open
and flexible as possible, we are aware that it cannot be
used to address all potential questions. To avoid too
high memory usage, the maximum size for the uploaded
data is limited to 25 MB, but this should be sufficient
for most experiments. There are only 3 essential levels
of information needed: the compounds, the samples and
their measured intensities. When the compound name is
not unique, the retention time (RT) should be supplied
additionally to merge these two, and for natural abun-
dance correction, the sum formulae are needed. The
complete requirements for the inputs are reported in
Table 1.

The generated graphs only allow a discrete x-axis, so it
is not possible to plot scaled numerical axes as times or
concentrations. Also, the names of the conditions shown
in the plots need to be different, so this does not allow
for grouped plots. This could be realised with more
complex or multiple input files for the sample descrip-
tions but would also increase the risk of user errors.

Further, the natural abundance correction as it is im-
plemented currently is limited to elements occurring in
nature (C, H, N, O, S), so it cannot be used to correct
GC-MS experiments containing Si, Cl or Br.

Beyond that, there are no limitations regarding the
number of compounds, replicates or conditions, as long
as the memory lasts. We have processed untargeted ex-
periments with over 1000 compounds flawlessly. The
performance depends on the number of conditions, the
number of replicates and the type of plots being gener-
ated. Nevertheless, in most situations, creating the
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sample-table and adjusting the design is the most time-
consuming step and typically takes longer than the time
needed to generate the plots. Plotting 250 compounds (5
conditions and 3 replicates) roughly needs 1 min, which
nearly doubles when multi-plot overview pages are gen-
erated. This is a dramatic performance boost compared
to manual plotting in which one could probably generate
a maximum of 3 or 4 plots in a minute.

Discussion

Metabolite AutoPlotter was designed to conveniently
process and visualise quantified metabolite data. A wide
range of pre-processed input formats (compound-inten-
sity tables) can be used and the design of the plots can
be easily adapted to personal preferences. This includes
graph types, plotting order, colours, statistics, size, file-
format, font sizes, font directions and some more.

Installing and running complex software can be an
obstacle for potential users; therefore, we decided to cre-
ate a web-based application using shiny. With this, the
analysis can be performed in a web-browser and results
can be downloaded as a zip file. In line with this, more
and more shiny applications are published currently,
helping with the analysis of different kinds of data [14—
20]. Other obstacles can be too strictly defined input for-
mats; therefore, we aimed to keep the inputs as open
and well described as possible.

AutoPlotter automatically generates identical plots for
all the compounds in the dataset containing data. The
plots can be used to be shown in presentations or publi-
cations and used to rapidly screen the results and dis-
cuss the findings with colleagues, to better understand
the data and design follow-up experiments. We are not
aware of any other software or webpage that performs
similar tasks. It seems as most of the software published
do help with the first steps of the data processing as
peak integration, compound identification, and data-
matrix creation or to identify differences in the (most
often untargeted) datasets [1, 3]. VANTED [21, 22] or
Cytoscape [23] allow the plotting of multiple com-
pounds, but their primary intention is to put the results
into a pathway context, showing multiple compounds at
once. Also, they require strictly defined input formats.
“PlotsOfData” [17] or “BoxplotteR” [18] are other online
tools, enabling the generation of detailed plots (e.g. add-
ing confidence intervals), but here, each and every com-
pound needs to be imported separately. MetaboAnalyst
[24, 25], Workflow4dmetabolomics [26] or XCMS online
[27, 28] offer complete solutions starting from the raw
data and performing statistical analysis, but even there,
it is difficult or not included at all to produce plots for
individual compounds.

With its simplicity, this tool aims primarily at re-
searchers new to this field, or running metabolomics
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experiments as side projects and to targeted analysis
where the researcher knows the identity of its com-
pounds. However, it could also be useful for metabolo-
mics core facilities to instantly deliver good quality
summaries towards clients while saving manpower and
time. For untargeted metabolomics with more than 1000
compounds, it might be more meaningful to identify
relevant features first and plot only these compounds,
even though it is feasible to plot so many compounds at
once.

Although AutoPlotter’s main purpose is the visualisa-
tion of metabolite data, it is not limited to this field and
could be employed in theory in other fields where simi-
lar data (multiple observations over a few conditions)
are generated, e.g. proteomics, transcriptomics or drug
responses to cell panels. AutoPlotter is under ongoing
development and new features will be added in time
based on the feedback from the community. Ongoing ef-
forts include the incorporation of clustering to identify
compounds with similar responses and normalisation
using internal standards.

Conclusions

Here, we present Metabolite AutoPlotter, a user-friendly
application to generate high-quality plots from complex
data, in a short time. Automating the data processing
and visualisation offers some dramatic improvements
over manual processing. It is significantly faster and al-
lows researchers to spend more time interpreting the re-
sults or to perform follow-up experiments. Further, this
eliminates potential copy-and-paste errors or tedious
repetitions when properties need to be changed. It also
enables the researcher to consider the full dataset and
not just a handful of metabolites that would be plotted
manually. Therefore, novel insights might be found in
metabolites that would have been overlooked otherwise.
Finally, defined tabular outputs generated by automated
processing can help to store the data generated in in-
ternal databases or to be shared using external repositor-
ies with other researchers [29, 30].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540170-020-00220-x.

Additional file 1. Detailed description of the exports in the results
folder.

Additional file 2. Demodata to reproduce the plots shown in the
figures.
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