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Abstract

as to the obesity-cancer connection have been lacking.

CRMP to slow tumor growth.
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Background: Obesity confers an increased risk and accelerates the progression of multiple tumor types in rodents
and humans, including both breast and colon cancer. Because sustained weight loss is rarely achieved, therapeutic
approaches to slow or prevent obesity-associated cancer development have been limited, and mechanistic insights

Methods: E0771 breast tumors and MC38 colon tumors were treated in vivo in mice and in vitro with two
mechanistically different insulin-lowering agents, a controlled-release mitochondrial protonophore (CRMP) and
sodium-glucose cotransporter-2 (SGLT2) inhibitors, and tumor growth and glucose metabolism were assessed.
Groups were compared by ANOVA with Bonferroni's multiple comparisons test.

Results: Dapagliflozin slows tumor growth in two mouse models (EQ771 breast cancer and MC38 colon
adenocarcinoma) of obesity-associated cancers in vivo, and a mechanistically different insulin-lowering agent,
CRMP, also slowed breast tumor growth through its effect to reverse hyperinsulinemia. In both models and with
both agents, tumor glucose uptake and oxidation were not constitutively high, but were hormone-responsive.
Restoration of hyperinsulinemia by subcutaneous insulin infusion abrogated the effects of both dapagliflozin and

Conclusions: Taken together, these data demonstrate that hyperinsulinemia per se promotes both breast and
colon cancer progression in obese mice, and highlight SGLT2 inhibitors as a clinically available means of slowing
obesity-associated tumor growth due to their glucose- and insulin-lowering effects.

Background

Approximately 5% of all cancers in men and ~ 10% of
all cancers in women are attributable at least in part to
obesity [1], with certain tumor types exhibiting an even
stronger relationship between excess weight and cancer
risk. Among these are breast [2—4] and colon cancer [2,
4, 5], in which obesity promotes tumor appearance, pro-
gression, and metastasis in rodent models and in human
patients. Hyperinsulinemia, which occurs as a conse-
quence of lipid-induced insulin resistance and may also
hasten its progression, is one of many putative links that
may explain the association between obesity and cancer:
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insulin promotes tumor cell division in vitro [6—10], and
plasma insulin concentrations are independently corre-
lated with an increased risk and accelerated progression
of both breast [11-15] and colon cancer [16—20]. Inter-
fering with insulin signaling may slow tumor growth
[21], while activation of the insulin receptor may pro-
mote tumor progression [22, 23] in murine models, al-
though there have also been publications demonstrating
the absence of an effect of insulin on tumor growth [24].
In humans with type 2 diabetes, exogenous insulin treat-
ment has been linked to an increased risk of developing
breast cancer [25-27] and poorer breast cancer out-
comes [28-30], although the impact of exogenous insu-
lin on tumor progression is debatable: recent meta-
analyses failed to detect an impact of insulin treatment
on breast cancer incidence [31-33]. The inconsistent
data regarding the impact of exogenous insulin
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treatment on breast cancer risk may be attributable to
the fact that exogenous insulin treatment is designed to
restore normal circulating insulin concentrations in
those with insufficient B-cell function; thus, it likely does
not create hyperinsulinemia in most cases. Even so, the
growing body of epidemiologic evidence for an associ-
ation between insulin and cancer risk and progression
begs the question of what explains the potential mech-
anistic link between obesity, hyperinsulinemia, and
cancer.

The ability of insulin to stimulate tumor cell prolifera-
tion is likely multifactorial and has been attributed to
stimulation of DNA replication and cell cycle progres-
sion, potentially by activation of the PI3K/Akt/FOXO1
signaling pathway, increased accumulation of DNA dam-
age, and increases in glucose uptake and/or oxidation.
Consistent with the latter mechanism, we have recently
shown that insulin’s ability to promote glucose uptake
and oxidation in vitro constitutes a metabolic signature
of obesity-associated tumor types [6], suggesting that
insulin-lowering therapies may be an attractive approach
to slow obesity-associated tumor growth, thereby
prolonging the window during which curative therapies
may be possible.

To that end, we have recently demonstrated that mito-
chondrial uncoupling with a controlled-release mitochon-
drial protonophore (CRMP) both prevents and reverses
insulin resistance and, as a result, hyperinsulinemia by
correcting non-alcoholic fatty liver disease (NAFLD) [34],
and that the reversal of hyperinsulinemia slows tumor
growth in two mouse models of colon cancer, MC38
tumor-bearing and Apc™™*'" mice [35]. Because uncoup-
ling is not yet an approved pharmacologic strategy to treat
NAFLD, it is of great interest to investigate the potential
for other agents to reverse obesity-associated insulin re-
sistance, hyperinsulinemia, and accelerated tumor growth.
Metformin also slows colon cancer growth in rodents
[36—-38] in an insulin-dependent manner [35] and may
modestly reduce colon cancer incidence in diabetic
humans [39, 40]. However, safety concerns exist: metfor-
min can cause undesirable gastrointestinal side effects and
is contraindicated in those with limited renal function, as
it can cause lactic acidosis. Therefore, there is a strong
need to investigate alternative insulin-lowering therapies
as a potential adjunct in those with obesity-associated
tumors.

SGLT?2 inhibitors have recently been investigated as a
potential anti-cancer therapy and have been shown to
induce apoptosis or inhibit proliferation of breast cancer
[41, 42], renal cell carcinoma [43], and hepatocellular
carcinoma [44] cells at high concentrations in vitro. In
vivo studies in rodents treated with SGLT2 inhibitors
have also been promising, if limited: canagliflozin low-
ered tumor burden in mice with hepatocellular [44—46],
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lung [47], and renal cell carcinoma [43] in vivo. How-
ever, the mechanism by which this occurs—and specific-
ally the possible role of alterations in systemic glucose
metabolism and potential ability of changes in plasma
insulin concentrations to mediate differences in tumor
glucose metabolism—has not been explored in obesity-
associated tumor types. Here, we examine the impact of
SGLT?2 inhibition with dapagliflozin on tumor growth in
mouse models of obesity-associated cancers: colon
adenocarcinoma (MC38 tumors) and triple-negative
breast cancer (E0771 tumors), two commonly used mur-
ine cancer models whose driver mutations remain under
debate and are likely multifactorial, but which robustly
express the insulin receptor [6, 36, 48, 49], and demon-
strate that dapagliflozin slows tumor growth in both
models. This effect is not due to increases in ketosis or
to a direct effect on tumor cell division, but rather is
mediated by the reversal of hyperinsulinemia, resulting
in reductions in tumor glucose uptake and oxidation.
Similarly CRMP slows E0771 tumor growth, similar to
its effect to slow colon tumor growth [35], by reversing
hyperinsulinemia and insulin-dependent increases in
tumor glucose uptake and oxidation, without any direct
effect to alter tumor cell metabolism or division. Taken
together, these data implicate hyperinsulinemia as a key
pathogenic factor in the progression of both breast and
colon cancer in two mouse models and identify SGLT2
inhibition as a potential means of slowing obesity-
associated cancer progression in vivo.

Methods

Cells

E0771 cells were obtained from CH3 Biosystems
(Amherst, NY) and cultured in the manufacturer’s
recommended media: RPMI 1640 supplemented with
10 mM HEPES, 10% FBS, and antimicrobials (100 U/
mL  penicillin/100 ug/mL  streptomycin/250 ug/mL
amphotericin). MC38 cells were obtained from Kera-
fast (Boston, MA) and cultured in the manufacturer’s
recommended media: DMEM containing 25 mM glu-
cose, 2mM glutamine, 0.1 mM nonessential amino
acids, 1mM sodium pyruvate, 10 mM HEPES, 10%
FBS, and antimicrobials (100 U/mL penicillin/100 pg/
mL streptomycin/250 pg/mL amphotericin). Neither
cell line was authenticated in our laboratory, but all
cells were used within 10 passages of obtaining them
commercially. Cells were cultured in a 37 °C humidi-
fied incubator and split as needed (2-3x weekly). In
vitro cell division was measured by incubating 1 x
10° E0771 cells or 5 x 10* MC38 cells in the agents
noted for 2 days (or vehicle, the media described
above). Forty-eight hours after plating, cells were
washed and trypsinized, and live cells were counted
by a blinded investigator 48 h later.
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Mice

All animal studies were approved by the Yale University
Institutional Animal Care and Use committee. Because
E0771 cells are a model of breast cancer that does not
express the estrogen or progesterone receptors, and be-
cause female mice are protected from obesity-associated
insulin resistance [50, 51], male mice were used in all
studies. C57bl/6] mice were obtained from Jackson La-
boratories at 6—8 weeks of age and after 1 week of accli-
mation, during which time they were fed regular chow
(Envigo 2018S, Huntington, Cambridgeshire, UK), and
mice were injected with tumor cells (2 x 10> MC38 cells
or 5 x 10° E0771 cells). On the day of injection, treat-
ment with high fat diet (Research Diets D12492, New
Brunswick, NJ; 60% kcal from fat, 20% from protein,
20% from carbohydrate) or the same HFD-containing
CRMP (7 mg CRMP per gram of diet, with an approxi-
mate dose of 12 mg active DNP per kilogram of body
weight per day). In the insulin replacement studies, three
insulin-containing pellets (LinBit) were implanted sub-
cutaneously on the day of tumor injection. Mice treated
with dapagliflozin were given drinking water containing
0.01 mg/mL dapagliflozin (Sigma, St. Louis, MO; ap-
proximate dose 2.5mg/kg per day), and those treated
with metformin were given drinking water containing
33 mg/mL metformin (Sigma; approximate dose 200 mg/
kg per day). In the B-OHB supplementation study, so-
dium B-OHB (Sigma) was provided at a concentration of
1 mM (approximate dose: 4 mmol/kg/day).

Tumor size was measured weekly using calipers in dupli-
cate by blinded investigators, with tumors assumed to be
spherical for calculation of volume based on the measured
diameter. Energetics, food, and water intake were measured
using the Columbus Instruments Comprehensive Lab Ani-
mal Monitoring System (CLAMS; Columbus, OH) during
the first week after tumor implantation. Body composition
(lean and fat mass) were examined by nuclear magnetic res-
onance spectroscopy (Bruker minispec; Billerica, MA). Mice
were sacrificed 3-4 weeks after tumor implantation, or
when tumor size exceeded 2000 mm?®, One week prior to
tracer studies, mice underwent surgery to place catheters in
the right jugular vein, which were then advanced into the
right atrium. After recovery of their pre-surgical body
weight and following a 5-h fast, mice underwent tracer
studies as described below. Mice were sacrificed at the end
of the tracer studies using IV pentobarbital. Tumor, liver,
and skeletal muscle (gastrocnemius) were harvested in N,-
cooled freeze clamps and stored at — 80 °C to await further
analysis. In the oral glucose tolerance tests (OGTT), mice
were gavaged with 1 g/kg dextrose, and a blood sample was
taken from the tail vein O min (no gavage), 15, 30, 60, or
120 min afterward. The mouse was sacrificed with isoflur-
ane anesthesia immediately after obtaining the blood sam-
ple, and tumors were isolated.

Page 3 of 13

Assessment of tumor glucose uptake and oxidation
Tumor glucose uptake and Vppy/Vcs were measured
ex vivo after a 6-h fast following a steady-state infusion
of [U-13C] glucose (1 mg/kg/min following a 5-min 3X
prime) and a bolus injection of [1-'*C] 2-deoxy-D-glu-
cose [35]. Briefly, Vppn/Vcs was measured in vivo and
in vitro as the ratio of [4,5-'3C,] glutamate/['*C;] ala-
nine, with glutamate enrichment measured by LC-MS/
MS and alanine enrichment by GC/MS. To measure
Vppu!/ Ves in vitro, we incubated 1 x 10° MC38 cells or
2 x 10° E0771 cells in a 6-well plate for 120 min in the
manufacturer’s recommended media, described above,
modified to supply physiological concentrations of glu-
cose (5mM [U-13Cg] glucose), and physiological fatty
acids (1 mM potassium palmitate). After 120 min, 1 mL
50% methanol was added, and cells were scraped, trans-
ferred to a 1.5mL Eppendorf tube, centrifuged, and
processed to measure Vppy/ Vs as described above. Of
note, we have previously demonstrated that physiologic
concentrations of glutamine do not significantly con-
found the measurement of this ratio [6]. Where indi-
cated, insulin, dapagliflozin, canagliflozin (Sigma), DNP
(Sigma), or B-OHB (Sigma) were added at the concen-
trations specified. To measure glucose uptake in vitro,
] 2-deoxyglucose (0.1 uCi) was added to cells (2 x
10° E0771 cells or 1 x 10° MC38 cells) in media de-
scribed above. Thirty minutes later, cells were washed
three times in warmed PBS, and scraped, collected in a
scintillation vial, and [**C] specific activity determined
using a scintillation counter. The rate of glucose uptake
was calculated assuming a constant rate of glucose up-
take over the 30-min incubation period.

Biochemical analysis

Plasma and urine glucose concentrations were measured
using the YSI Glucose Analyzer. Plasma insulin was
measured by RIA by the Yale Diabetes Research Center,
or (OGTT samples only) by ELISA (Mercodia, Uppsala,
Sweden), and plasma B-OHB by GC/MS, using the sam-
ple preparation method we have described [52] after
spiking plasma samples with a 1-mM [**C,] B-OHB
standard. Tumor DNP concentrations were assessed by
LC-MS/MS [53]. Tumor Akt pSer473 phosphorylation
and total Akt expression, pS70 S6K pThr389 phosphor-
ylation, and total S70 S6K expression were assessed by
western blot using antibodies from Cell Signaling (cata-
log numbers 9271, 2920, 9206, and 9202, respectively).

Statistical analysis

GraphPad Prism 7.0 was used for statistical analysis.
Two groups were compared by the two-tailed unpaired
Student’s ¢ test, and three or more groups by ANOVA
with Bonferroni’s multiple comparisons test, after
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verifying that the data met the assumptions of the statis-
tical test employed. Data are presented as the mean *
S.E.M.

Results

Dapagliflozin slows E0771 tumor growth in obese mice in
an insulin-dependent manner

To examine the potential utility of dapagliflozin as an
anti-tumor agent in vivo, we treated obese mice with
dapagliflozin in drinking water beginning on the day of
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E0771 tumor implantation. Not surprisingly, dapagliflo-
zin caused glycosuria, but did not affect energy expend-
iture or caloric intake, measured during the first week of
treatment before the groups of mice diverged in body
weight (Fig. 1a, Additional file 1: Figure S1A-]). As ex-
pected, water intake increased in the dapagliflozin-
treated group as a compensatory mechanism to avoid
dehydration, and a small (1%), physiologically insignifi-
cant increase in respiratory exchange ratio was also ob-
served. However, 3 weeks later, sustained glucose
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wasting in urine was associated with reductions in body
weight and fat mass in high-fat fed mice (Additional file
1: Figure S1K-L). SGLT2 inhibition lowered plasma glu-
cose concentrations in 5-h fasted mice by 80 mg/dL and
reduced plasma insulin concentrations in fed, 5-h fasted,
and 16-h fasted mice (Fig. 1b, c¢), in contrast to metfor-
min, which lowered plasma insulin only after a pro-
longed fast (Additional file 1: Figure SIM). To examine
the impact of the reduction in plasma insulin on tumor
growth and metabolism, we infused insulin subcutane-
ously to match plasma insulin concentrations in 5-h
fasted dapagliflozin-treated mice to those measured in
untreated HFD controls. E0771 tumor glucose metabol-
ism was insulin-responsive: glucose uptake and oxidation
were increased in tumors of HED fed, hyperinsulinemic
mice but normalized with dapagliflozin treatment; how-
ever, restoring hyperinsulinemia via subcutaneous insu-
lin infusion increased tumor glucose uptake and
oxidation to rates observed in HFD control mice. Hyper-
insulinemia had a profound effect on tumor growth
rates: 4 weeks after tumor implantation, EQ771 tumors
were 1000 mm?® larger in HFD mice than lean controls.
However, dapagliflozin treatment reduced rates of tumor
growth such that tumor growth in dapagliflozin-treated
mice mimicked that of chow fed animals. This effect was
insulin-mediated: restoring hyperinsulinemia increased
tumor growth rates in dapagliflozin-treated mice to
those measured in obese HFD mice.

Next, we aimed to examine whether the ability of
dapagliflozin to slow E0771 tumor growth was a cell-
autonomous effect. The maximum daily dose of dapagli-
flozin is 10 mg per day in humans; this dose results in a
peak dapagliflozin concentration of less than 0.4 puM
[54]. Ten-fold higher dapagliflozin concentrations had
no impact on E0771 tumor glucose uptake or oxidation,
nor did this dose of dapagliflozin alter cell division
in vitro (Fig. 2a—c); however, 10,000-fold higher, supra-
pharmacologic dapagliflozin concentrations did reduce
glucose uptake and oxidation, associated with slower
E0771 cell division in vitro. In contrast, canagliflozin
showed a dose-dependent effect to reduce tumor glucose
uptake and oxidation and to suppress tumor cell division
at pharmacologically relevant doses [55] (Fig. 2a—c).
These data indicate that SGLT2 inhibitors may have
some cell-autonomous effect to slow tumor growth,
likely through direct suppression of tumor glucose me-
tabolism. However, the lack of an effect of dapagliflozin
at pharmacologically relevant concentrations suggests
that most if not all of the impact of this agent occurs
through alterations in systemic metabolism. In contrast,
insulin—at doses that are supraphysiologic but com-
monly used in in vitro studies in the literature—pro-
moted both glucose uptake and oxidation in E0771
tumors, accelerating tumor cell division (Fig. 2a—c).
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CRMP slows E0771 tumor growth in obese mice in an
insulin-dependent manner

After observing the ability of dapagliflozin to slow E0771
breast tumor growth by reversing hyperinsulinemia, we
asked whether similar effects would be seen as a result
of reducing circulating insulin concentrations with an
agent that works through a divergent mechanism. To
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that end, we treated obese, HFD fed, E0771 tumor-
bearing mice with CRMP. Consistent with previous data
[34, 56] and with an uncoupling effect confined to the
liver, CRMP treatment did not alter body weight or fat
mass, whole-body energy expenditure, food or water in-
take, or respiratory exchange ratio in obese mice (Add-
itional file 1: Figure S2A-J). However, mitochondrial
uncoupling lowered liver, plasma, and skeletal muscle
triglyceride content (Fig. 3a, Additional file 1: Figure
S2K-L). This reduction in ectopic lipid content resulted
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in lower 5-h fasted plasma glucose concentrations, and
lower plasma insulin concentrations under both fed and
fasted conditions (Fig. 3b, c). Tumor glucose uptake and
oxidation were both modulated by circulating insulin
concentrations and normalized by insulin sensitization:
high fat feeding increased, and CRMP decreased, both
parameters. However, restoring hyperinsulinemia by
chronic subcutaneous insulin infusion increased tumor
glucose uptake and oxidation to levels measured in un-
treated HFD tumor-bearing mice, confirming that tumor

Fig. 3 A controlled-release mitochondrial protonophore slows E0771 breast tumor growth in an insulin-dependent manner. a Liver triglyceride
content. In all panels, unless otherwise specified, all mice were fasted for 5 h before they were studied. b, ¢ Plasma glucose and insulin
concentrations. d Tumor 2-deoxyglucose uptake and Vepn/Ves. f Tumor size. **P < 0.01 vs. chow, #P < 0.05, ##P < 0.01 vs. HFD + CRMP, with the
color of the symbols indicating the group compared to the group designated by the symbols. In all panels, data are the mean + SEM. of n = 5-
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glucose uptake and oxidation are dynamic and insulin-
responsive  (Fig. 3d, e). These insulin-mediated
alterations in tumor glucose metabolism translated to
differences in tumor size: high fat feeding accelerated
E0771 tumor growth, whereas the reversal of insulin re-
sistance and hyperinsulinemia with CRMP reversed this
effect through an insulin-mediated mechanism. How-
ever, infusion of insulin via subcutaneous pellet to match
plasma insulin concentrations in CRMP-treated mice to
those of HFD control animals completely abrogated the
effect of CRMP to slow tumor growth (Fig. 3f).

Next, we aimed to understand whether DNP exerted a
direct effect on tumor growth or metabolism independ-
ent of insulin. Although tumor DNP concentrations in
six CRMP-treated mouse tumors were negligible (0.015
+ 0.003 nmol/g, approximately equivalent to 0.015 pM),
we confirmed that DNP did not affect tumor glucose
metabolism or growth directly by measuring the rate of
glucose uptake, Vppy/Vcs, and cell division in vitro in
MC38 cells and found each parameter to be unaltered
after incubation in 1 puM DNP but increased with high
concentrations of insulin (Fig. 4a—c). However, higher,
markedly supraphamacologic DNP concentrations were
toxic to the cells, reducing tumor glucose uptake, oxida-
tion, and cell number.

Dapagliflozin slows MC38 tumor growth in obese mice in
an insulin-dependent manner

Having demonstrated that dapagliflozin impedes E0771
tumor growth by reversing systemic hyperinsulinemia,
we next asked whether these results would translate to a
second obesity-associated mouse tumor model: MC38
colon adenocarcinoma. Dapagliflozin caused profound
glucosuria and increased water drinking before diver-
gence in body weight, but did not affect food intake, en-
ergy expenditure, or the respiratory exchange ratio
(Additional file 1: Figure S3A-]). However, after 4 weeks
of treatment, dapagliflozin treatment resulted in lower
body weight, an effect partially abrogated by insulin re-
placement (Additional file 1: Figure S3K-L). Chronic
dapagliflozin treatment lowered plasma glucose and in-
sulin concentrations and reduced both tumor glucose
uptake and Vppy/Vcs in an insulin-dependent manner,
whereas obesity increased tumor glucose metabolism
and SGLT2 inhibition normalized it, the obesity- and
hyperinsulinemia-associated increases in glucose uptake
and oxidation were restored by chronic subcutaneous in-
sulin infusion (Fig. 5b—e). Similar to its effect in E0771
breast cancer, dapagliflozin slowed MC38 tumor growth:
4 weeks after tumor implantation, tumor size was re-
duced by 50% in dapagliflozin-treated obese mice; how-
ever, the effect of dapagliflozin to slow tumor growth
was reversed by restoring hyperinsulinemia (Fig. 5f).
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Next, we explored whether SGLT2 inhibitors exert a
direct effect to alter glucose metabolism or cell division
in MC38 cells at pharmacologically relevant concentra-
tions. While dapagliflozin did not alter glucose uptake,
Vppu/ Vs, or cell division at concentrations in the range
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group, with groups compared by ANOVA with Bonferroni's multiple comparisons test

of those measured in patients treated with the maximum
daily dose of the drug (0.5 uM), but reduced all three pa-
rameters at a suprapharmacologic concentration (5

mM), canagliflozin reduced both glucose uptake and
oxidation at pharmacologically relevant concentrations
(Fig. 6a—c). Because SGLT2 inhibitors can cause
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ketoacidosis [57], albeit typically not in the well-
hydrated state [58], and a ketogenic diet may slow tumor
growth, at least in animals [59], we then asked whether
ketones themselves may alter tumor growth. In contrast
to insulin, which promoted MC38 cell division in vitro

at supraphysiologic concentrations, incubation in

physiologic (1 mM) concentrations of p-hydroxybutyrate
(B-OHB) had no impact on cell division (Fig. 6d). Finally,
we examined the potential impact of ketones themselves
to alter MC38 tumor growth in vivo and found that
chronic (4 weeks) ketone supplementation in drinking
water had no impact on plasma glucose or insulin
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concentrations or on tumor size, despite doubling
plasma B-OHB concentrations (Fig. 6e, f, Additional file
1: Figure S3M-N).

Tumor insulin signaling changes dynamically after a meal
The fact that insulin promotes tumor growth in vivo, as-
sociated with increased tumor glucose uptake and oxida-
tion, and that two agents that lower both fasting and
postprandial insulin concentrations strikingly slow both
E0771 and MC38 tumor growth, suggest that tumor in-
sulin signaling may be dynamically regulated. To test
this possibility, we performed an oral glucose tolerance
test in MC38 tumor-bearing mice and observed a transi-
ent postprandial increase in phosphorylation of Akt in
tumor (pSer473), which was slightly delayed as com-
pared to plasma insulin concentrations, and an increase
in tumor pThr389 p70 S6K (Fig. 7a, b, Additional file 1:
Figure S5A-B), demonstrating that tumor insulin signal-
ing indeed is acutely altered in response to normal
physiological changes in insulin concentrations.

Discussion

Obesity increases the risk of certain tumor types, and
intentional weight loss may mitigate cancer risk [60, 61];
however, because weight loss is difficult to achieve and
even more difficult to maintain, and may not be advis-
able in certain patients with cancer, alternative ap-
proaches—and inquiry into the mechanisms by which
obesity-associated cancer risk may be reduced—are ur-
gently warranted. Metformin has been shown to slow
both breast [62] and colon cancer [63] in multiple pre-
clinical models, but results in humans are mixed and
clear evidence for a large anti-tumor effect of metformin
are lacking. Metformin’s underwhelming efficacy may be
due in part to its mechanism: the drug inhibits gluco-
neogenesis but does not exert an insulin-sensitizing ef-
fect; therefore, it lowers fasting plasma glucose and
insulin concentrations but has a much smaller effect on
these parameters under postprandial conditions (Add-
itional file 1: Figure S1IM). In the current study, we dem-
onstrate that tumor insulin signaling is dynamically
regulated under postprandial conditions (Fig. 7). These
data suggest that agents that lower both fasting and
postprandial insulin concentrations, whether by urinary
glucose wasting (Fig. la,c, and Fig. 5a,c) or by insulin
sensitization (Fig. 3c) would be more effective because
they would have a more profound impact on total insu-
lin area under the curve throughout the day.

For this reason, in the current study, we investigated
the impact of two agents that lower plasma insulin con-
centrations under both fed and fasted conditions, CRMP
and dapagliflozin, in two mouse models of obesity-
associated cancer. Previous studies have reported con-
flicting results regarding the interaction between SGLT2
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inhibitors and cancer risk: a slightly—not statistically sig-
nificantly—elevated risk of bladder cancer in men and of
breast cancer in women was initially reported; however,
this has since been attributed to detection bias, as both
animal studies using higher doses and better-powered
human studies have not detected an increased risk of
cancer in those treated with SGLT?2 inhibitors [64]. To
the contrary, recent in vivo studies have suggested that
SGLT?2 inhibition may be an effective means of attenuat-
ing hepatocellular [44—46], renal cell [43], and lung can-
cer [47] growth by an unclear mechanism.

Based on the insulin-dependent impact of a mitochon-
drial uncoupler to slow obesity-associated colon cancer
growth in mouse models [35], we hypothesized that the
SGLT2 inhibitor dapagliflozin, which lowers both fasting
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and postprandial glucose and insulin concentrations,
may slow obesity-associated breast and colon tumor
growth through an insulin-dependent mechanism. Con-
sistent with this hypothesis, dapagliflozin slowed tumor
growth in mouse models of obesity-associated breast and
colon cancer; however, the ability of dapagliflozin to slow
tumor growth was completely abrogated by subcutaneous
insulin infusion to increase plasma insulin concentrations
to those measured in HFD controls. While suprapharma-
cologic concentrations of two SGLT2 inhibitors did
reduce E0771 and MC38 tumor cell division in a cell-
autonomous manner, this effect was correlated with re-
ductions in glucose uptake and oxidation in vitro—again
demonstrating the key role for dynamic regulation of
tumor glucose uptake—and is likely of minimal relevance
in vivo; otherwise, dapagliflozin would be expected to slow
tumor growth independent of insulin replacement. Im-
portantly, an insulin-dependent or insulin-independent ef-
fect on tumor glycolysis and/or lactate metabolism cannot
be ruled out in these studies: it is possible that insulin-
dependent changes in tumor cell glucose oxidation com-
bine with alterations in glycolytic metabolism to mediate
the effects observed on tumor growth in vivo.

Having demonstrated that dapagliflozin slows tumor
growth in two mouse models of obesity-associated can-
cer and that reversal of hyperinsulinemia is necessary for
the in vivo tumor-suppressive effect of this SGLT2 in-
hibitor, we then examined a second insulin-lowering
agent, CRMP, which works by an entirely independent
mechanism: insulin sensitization [34], rather than calorie
loss through glycosuria. CRMP reversed NAFLD and
normalized muscle lipid content, likely through reduc-
tions in hepatic lipid export, as we have previously dem-
onstrated [34]. Like dapagliflozin, incubation in DNP,
the active agent in CRMP, had no impact on tumor cell
division in vitro. Combined with in vivo data demon-
strating that increasing plasma insulin concentrations in
CRMP-treated mice to match those measured in HFD
controls renders CRMP unable to slow tumor progres-
sion, these data demonstrate that the ability of this insu-
lin sensitizer to slow E0771 breast tumor growth
depends on its effect to reverse hyperinsulinemia. In
addition, changes in body weight and body fat were dis-
sociated from the effect of CRMP on tumor growth:
CRMP treatment was not associated with any difference
in either parameter, despite its striking effect to slow
tumor growth.

Conclusions

In summary, these data demonstrate that strategies to
mitigate hyperinsulinemia—preferably both fasting and
postprandial hyperinsulinemia, as can be accomplished
using SGLT?2 inhibitors, which are already in the clinic,
or insulin sensitizers under development—may be
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therapeutic targets worthy of further exploration to at-
tenuate breast and/or colon cancer risk and progression.
These results are consistent with clinical data indicating
that exercise and weight loss, which are classic insulin
sensitizing interventions, attenuate the risk and slow the
progression of breast cancer [60, 65, 66] and may also
slow the progression of colon cancer [67-69]. However,
because weight loss after cancer diagnosis is associated
with poorer outcomes, interventions that cause little to
no weight loss but reduce insulin concentrations out of
proportion to body weight change may be attractive tar-
gets. Taken together, these data demonstrate that hyper-
insulinemia per se promotes breast cancer progression
in obese mice, and recommend clinical studies investi-
gating the potential utility of insulin-lowering agents in-
cluding SGLT2 inhibitors and insulin-sensitizing
mitochondrial protonophores currently under develop-
ment as a means of slowing obesity-associated breast
tumor growth.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540170-019-0203-1.

Additional file 1: Figure S1. Dapagliflozin slows E0771 breast tumor
growth in an insulin-dependent manner. Figure S2. A controlled-release
mitochondrial protonophore slows E0771 breast tumor growth in an
insulin-dependent manner. Figure S3. Dapagliflozin slows MC38 colon
tumor growth in an insulin-dependent manner. Figure S4. Ketone sup-
plementation in drinking water does not independently alter MC38 colon
tumor growth. Figure S5. Insulin signaling is dynamically activated under
postprandial conditions in MC38 tumors.
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