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Abstract

Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces
cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic
experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction
underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer
pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict
therapeutic relevance.

Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by
quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations
under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure
of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model.
Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions
identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect
to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict
differential gene expression causally influencing doxorubicin anti-tumor efficacy.

Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes
are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate
requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human
homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict
causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis
suggested conserved cellular responses to doxorubicin due to influences of homologous recombination,
sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene
functions.

Conclusions: Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration
of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug
interaction networks and provides a new experimental approach to model their influence on chemotherapy
response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict
efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.

Keywords: Genetic buffering, Yeast phenomics, Quantitative high throughput cell array phenotyping (Q-HTCP), Cell
proliferation parameters (CPPs), Doxorubicin, Warburg metabolism, Differential gene interaction networks, Recursive
expectation-maximization clustering (REMc), Pharmacogenomics, Human-like/HL yeast media
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Background
The Warburg effect refers to the phenomena of cancer
cells undergoing a metabolic transition from respiration
to aerobic glycolysis and has been documented for over
90 years, yet there remains a lack of consensus regarding
how this contributes to cancer [1–3]. In humans, aerobic
glycolysis is a cancer-specific metabolic transition; how-
ever, yeast normally represses respiration in the presence
of adequate glucose [4–6]. Although not possible in a
single cell organism to ascertain the role of the Warburg
transition in oncogenesis, we wondered whether it might
influence chemotherapeutic response, and particularly in
the context of vulnerabilities created by genomic in-
stability and unique to individual patient’s cancers. Using
doxorubicin as a model anti-cancer agent, we examined
whether doxorubicin-gene interaction manifests differ-
entially under glycolytic vs. respiratory conditions in
yeast and how genetic insights from the yeast model
might lead to predicting variable efficacy in killing can-
cer cells. It is also possible that the model could be in-
formative regarding dose-limiting toxicity observed in
cardiomyocytes, which have respiratory rates among the
highest of all cell types [7].
Doxorubicin is used widely in oncology to treat both

hematologic cancer and solid tumors [8]. Proposed
mechanisms of doxorubicin cytotoxicity include topo-
isomerase II poisoning, DNA adduct formation, oxida-
tive stress, and ceramide overproduction [8–13].
Topoisomerase II is an ATP-dependent enzyme that re-
lieves the DNA torsional stress occurring with replica-
tion or transcription by catalyzing a double-stranded
DNA (dsDNA) break, relaxing positive and negative
DNA supercoiling, and finally re-ligating the DNA [14].
Inhibiting this activity can result in irreparable DNA
damage and induction of apoptosis, selectively killing
rapidly dividing proliferating cells [15–17]. Doxorubicin
also causes histone eviction leading to chromatin trap-
ping and damage [9, 18–20]. In addition to its potent
anti-cancer therapeutic properties, doxorubicin is known
for dose-limiting cardiomyocyte toxicity, causing cardio-
myopathy and heart failure years post-treatment [21]. In
this regard, topoisomerase IIB is highly expressed specific-
ally in myocardiocytes, where tissue-specific deletion sup-
presses cardiac toxicity in mice [22]. Clinical guidelines
recommend a maximum cumulative lifetime dose of 500
mg/m2; however, doxorubicin toxicity is variable and has
a genetic basis [23]. Thus, a detailed understanding of
drug-gene interaction could advance the rationale for
more precisely prescribing doxorubicin (among other
cytotoxic agents) and also predicting toxicity, based on the
unique genetic context of each patient’s tumor genetic
profile as well as germline functional variation.
To address these questions, this work establishes a

yeast phenomic model to understand genetic pathways

that buffer doxorubicin toxicity [24–30], and how the
Warburg effect influences the doxorubicin-gene inter-
action network. We conducted yeast phenomic analysis
of doxorubicin-gene interaction, consisting of quantita-
tive high throughput cell array phenotyping (Q-HTCP)
of the yeast knockout and knockdown (YKO/KD) librar-
ies, using multiple growth inhibitory concentrations of
doxorubicin in either dextrose- (HLD) or ethanol/gly-
cerol-based (HLEG) media. Q-HTCP provided cell pro-
liferation parameters (CPPs) with which to quantify
doxorubicin-gene interaction and determine its depend-
ence on respiratory vs. glycolytic metabolism [31–33].
The yeast phenomic model was used to predict causality
underlying correlations between doxorubicin sensitivity
and increased or decreased expression of the homolo-
gous human gene in pharmacogenomics data from can-
cer cell lines. Thus, the work details genetic pathways
for buffering doxorubicin toxicity in yeast, including the
influence of Warburg metabolism on the network, and
applies the information to predict interactions between
doxorubicin and functional genetic variation that could
be present in cancers from different, individual patients.

Methods
Strains and media
The yeast gene knockout strain library (YKO) was ob-
tained from Research Genetics (Huntsville, AL, USA).
The knockdown (KD) collection, also known as the De-
creased Abundance of mRNA Production (DAmP) li-
brary, was obtained from Open Biosystems (Huntsville,
AL, USA). The genetic background for the YKO library
was BY4741 (S288C MATa ura3-Δ0 his3-Δ1 leu2-Δ0
met17-Δ0). Additional information and lists of strains
can be obtained at https://dharmacon.horizondiscovery.-
com/cdnas-and-orfs/non-mammalian-cdnas-and-orfs/
yeast/#all. Some mutants appear multiple times in the
library and they are treated independently in our ana-
lysis. HL yeast media, a modified synthetic complete
media [27], was used with either 2% dextrose (HLD)
or 3% ethanol and 3% glycerol (HLEG) as the carbon
source.

Quantitative high throughput cell array phenotyping (Q-
HTCP)
Phenomic data was obtained by Q-HTCP, a custom,
automated method of collecting growth curve pheno-
types for the YKO/KD library arrayed onto agar media
[33]. A Caliper Sciclone 3000 liquid handling robot was
used for cell array printing, integrated with a custom
imaging robot (Hartman laboratory) and Cytomat 6001
(Thermo Fisher Scientific, Asheville, NC, USA) incuba-
tor. Three hundred eighty-four-culture array images
were obtained approximately every 2 h and analyzed as
previously described [28, 33]. To obtain CPPs, image
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data were fit to the logistic equation, G(t) = K/(1 + e−r(t
−l)), assuming G(0) < K, where G(t) is the image inten-
sity of a spotted culture vs. time, K is the carrying cap-
acity, r is the maximum specific growth rate, and l is
the moment of maximal absolute growth rate, occur-
ring when G(t) = K/2 (the time to reach half of carrying
capacity) [31]. The resulting CPPs were used as pheno-
types to measure doxorubicin-gene interaction.

Quantification of doxorubicin-gene interaction
Gene interaction was defined by departure of the corre-
sponding YKO/KD strain from its expected phenotypic
response to doxorubicin. The expected phenotype was
determined by cell proliferation phenotypes of the
mutant without doxorubicin, together with those of
the reference strain with and without doxorubicin
[24–26, 28]. The concentrations of doxorubicin (0,
2.5, 5, 7.5, and 15 ug/mL) were chosen based on
phenotypic responses being functionally discriminating
in the parental strain. We tested for effects of mating
type or ploidy on doxorubicin growth inhibition
(Additional file 1: Figure S1) and noted only small
differences between the YKO/KD parental strain ge-
notypes, BY4741 (MATa ura3-Δ0 his3-Δ1 leu2-Δ0
met17-Δ0), BY4742 (MATα ura3-Δ0 his3-Δ1 leu2-Δ0
lys2Δ0), BY4741R (MATa ura3-Δ0 his3-Δ1 leu2-Δ0
lys2Δ0), BY4742R (MATα ura3-Δ0 his3-Δ1 leu2-Δ0
met17-Δ0), and diploid strains derived from these
haploids. In this regard, haploid MET17/lys2-Δ0 was
associated with a lower carrying capacity in HLD
media (Additional file 1: Figure S1), but genome-wide
experiments were not performed in this background.
Interaction scores were calculated as previously de-

scribed [28], with slight modifications, as summarized
below. Variables were defined as follows:
Di = concentration (dose) of doxorubicin
Ri = observed mean growth parameter for parental ref-

erence strain at Di

Yi = observed growth parameter for the YKO/KD mu-
tant strain at Di

Ki = Yi–Ri, the difference in growth parameter between
the YKO/KD mutant (Yi) and reference (Ri) at Di

K0 = Y0 –R0, the effect of gene KO/KD on the ob-
served phenotype in the absence of doxorubicin; this
value is annotated as “shift” and is subtracted from all Ki

to obtain Li
Li = Ki–K0, the interaction between (specific influence

of) the KO/KD mutation on doxorubicin response, at Di

For cultures not generating a growth curve, Yi = 0 for
K and r, and the L parameter was assigned Yi max, de-
fined as the maximum observed Yi among all cultures
exhibiting a minimum carrying capacity (K) within 2
standard deviations (SD) of the parental reference strain

mean at Di. Yi max was also assigned to outlier values
(i.e., if Yi > Yi max).
The interaction was calculated by the following steps:

1) Compute the average value of the 768 reference
cultures (Ri) at each dose (Di)

2) Assign Yi max (defined above) if the growth curve
is observed at D0, but not at Di, or if observed Yi is
greater than Yi max

3) Calculate Ki = Yi–Ri
4) Calculate Li = Ki–K0

5) Fit data by linear regression (least squares): Li = A +
B*Di

6) Compute the interaction value “INT” at the max
dose: INT = Li max = A + B*Dmax

7) Calculate the mean and standard deviation of
interaction scores for reference strains, mean
(REFINT) and SD (REFINT); mean (REFINT) is
expected to be approximately zero, but SD (REFINT)
is useful for standardizing against variance
(Additional files 2, 3 and 4).

8) Calculate interaction z-scores (Fig. 1d):

z−score YKO=KDINTð Þ ¼ ðYKO=KDINT �mean REFINTð ÞÞ=SD REFINTÞð

z-score (YKO/KDINT) > 2 for L or ≤ 2 for K are re-
ferred to as gene deletion enhancers of doxorubicin
cytotoxicity, and conversely, L interaction score ≤ 2 or K
interaction scores > 2 are considered gene deletion sup-
pressors (Fig. 1e).

Recursive expectation-maximization clustering (REMc)
and heatmap generation
REMc is a probability-based clustering method and was
performed as previously described [34]. Clusters
obtained by Weka 3.5, an EM-optimized Gaussian
mixture-clustering module, were subjected to hierarch-
ical clustering in R (http://www.r-project.org/) to further
aid visualization with heatmaps. REMc was performed
using L and K interaction z-scores (Fig. 1f). REMc uses
an expectation-maximization algorithm to define clus-
ters probabilistically and is applied recursively to resolve
gene interaction profile clusters. REMc terminates when
a round of clustering reveals no new clusters. The clus-
ter naming convention is “A-B.C.D-X”, where “A” = the
round of clustering, “B” = 0, and “C.D-X” indicates the
cluster pedigree. For example, 1-0-0 refers to the first
cluster of the first round, 2-0.0-3 the fourth cluster de-
rived from 1-0-0 (in round 2 of REMc), 3-0.0.3-1 indi-
cates the second cluster derived from 2-0.0-3 (in round
3), and so on [34]. The main effect of the gene KO or
KD on cell proliferation, i.e., Ki in the absence of doxo-
rubicin (D0) is also referred to as “shift.” The shift was
not subjected to REMc, but was included for hierarchical
clustering and visualization by heatmaps after REMc. Ki
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Fig. 1 (See legend on next page.)
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is termed shift, because this value is subtracted from
the data series for each YKO/KD to obtain Li values,
which are fit by linear regression for calculating
drug-gene interaction. Additional file 5 contains
REMc results in text files with associated data also
displayed as heatmaps. In cases where a culture did
not grow in the absence of drug, 0.0001 was
assigned as the interaction score, and associated data
were colored red (“NA”) in the shift columns of the
heatmaps.

Gene ontology term finder (GTF)
A python script was used to format REMc clusters
for analysis with the command line version of the
GO Term Finder (GTF) tool downloaded from http://
search.cpan.org/dist/GO-TermFinder/ [35]. GTF re-
ports on the enrichment of Gene Ontology (GO)
terms by comparing the ratio of genes assigned to a
term within a cluster to the respective ratio involving
all genes tested. Additional file 5 contains GTF ana-
lysis of all REMc clusters. GO-enriched terms from
REMc were investigated with respect to genes repre-
senting the term and literature underlying their anno-
tations [36].

Gene ontology term averaging (GTA)
In addition to using GTF to survey functional enrich-
ment in REMc clusters, we developed GTA as a comple-
mentary workflow, using the GO information on SGD at
https://downloads.yeastgenome.org/curation/literature/
to perform the following analysis:

1. Calculate the average and SD for interaction values
of all genes in a GO term.

2. Filter results to obtain terms having GTA value
greater than 2 or less than − 2.

3. Obtain GTA scores defined as |GTA value|—gtaSD;
filter for GTA score > 2.

The GTA analysis is contained in Additional file 6 as ta-
bles and interactive plots created using the R plotly pack-
age https://CRAN.R-project.org/package=plotly. GTA
results were analyzed primarily using the L interaction
scores; however, GTA results with K interaction scores
are included in Additional file 6: File D.

Validation of doxorubicin-gene interaction
We retested 364 YKO/KD strains having human ho-
mologs in the P-POD database [37] and L interaction
scores greater than 2 or less than − 2 in at least one
media type. Strains were struck to obtain four single
colonies and arranged on replicate 384-well plates
along with 20 reference strain controls and reanalyzed
by Q-HTCP on HLD and HLEG, as in the genome-
wide experiment. Results are summarized in Fig. 2s, t,
Additional file 2: Tables S5–S8, and Additional files 3
and 4: Files C-D.

Prediction of human homologs that influence tumor
response to doxorubicin
PharmacoDB reports on pharmacogenomics data
from cancer cell lines, including transcriptomics and
drug sensitivity [38]. The PharmacoGx R/Bioconduc-
tor package [39] was used to analyze the GDSC1000
(https://pharmacodb.pmgenomics.ca/datasets/5) and
gCSI (https://pharmacodb.pmgenomics.ca/datasets/4)
datasets, which contained transcriptomic and doxo-
rubicin sensitivity results. A p value < 0.05 was used
for differential gene expression and doxorubicin sen-
sitivity. For gene expression, the sign of the standard-
ized coefficient denotes increased (+) or decreased (−)
expression. The biomaRt R package [40, 41] was used
with the Ensembl database [42] to match yeast and
human homologs from the phenomic and transcrip-
tomic data, classifying yeast-human homology as one
to one, one to many, and many to many.

(See figure on previous page.)
Fig. 1 Experimental strategy to characterize differential doxorubicin-gene interaction, with respect to the Warburg metabolic transition. a The
phenomic model incorporates treatment of individually grown cultures of the YKO/KD collection with increasing doxorubicin (0, 2.5, 5, 7.5, and 15
ug/mL) in “fermentable/glycolytic” (HLD) or “non-fermentable/respiratory” (HLEG) media. b Representative cell array images, treated and untreated
with 15 ug/mL doxorubicin. c Time series of individual culture images, exemplifying gene deletion suppression (vps54-Δ0) and gene deletion
enhancement (mms1-Δ0), relative to parental control (“RF1”) in HLEG media with indicated concentrations (0, 5, and 15 ug/mL) of doxorubicin. d
After image analysis, data time series are fit to a logistic growth function, G(t), to obtain the cell proliferation parameters (CPPs), K (carrying
capacity), L (time at which K/2 is reached), and r (maximum-specific rate) for each culture. “ΔL” (left panel) indicates Ki (see the “Methods” section).
e Interaction is quantified by linear regression of Li (indicated “Delta_L” and “Delta_K” in right panels; see the “Methods” section) across the entire
dose range, which is converted to a z-score by dividing with the variance of the parental reference control (see the “Methods” section). f Gene
interaction profiles were grouped by recursive expectation-maximization clustering (REMc) to reveal deletion-enhancing and deletion-suppressing
doxorubicin-gene interaction modules and the influence of the Warburg effect. Resulting clusters were analyzed with GOTermFinder (GTF) to
identify enriched biological functions. g Gene Ontology Term Averaging (GTA) was used as a complement to REMc/GTF. h The model for genetic
buffering of doxorubicin cytotoxicity incorporates primary and interaction effects involving glycolysis (green), and respiration (red), to explain the
influence of Warburg context (blue) on doxorubicin-gene interaction (black)
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Fig. 2 (See legend on next page.)
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Results
Phenomic characterization of doxorubicin response genes
The workflow for analyzing doxorubicin-gene inter-
action and differential buffering of doxorubicin with re-
spect to the Warburg effect is summarized in Fig. 1.
Alternately, in a respiratory or glycolytic (HLEG or HLD
media, respectively) context (Fig. 1a), Q-HTCP technol-
ogy was used for high throughput kinetic imaging of
384-culture cell arrays plated on agar media (Fig. 1b),
image analysis (Fig. 1c), and growth curve fitting (Fig.
1d) to obtain the CPPs, L (time to reach half-carrying
capacity), K (carrying capacity), and r (maximum specific
rate) [28, 31, 33], which were used to measure
doxorubicin-gene interaction across the entire YKO/KD
library. The departure of the observed CPP from the ex-
pected doxorubicin response for each YKO/KD strain
was derived using distributions from many replicate ref-
erence strain control cultures and summarized across all
doxorubicin concentrations by linear regression (Fig. 1e).
Interaction scores with absolute value greater than two
were considered as gene deletion enhancement (z-score_
L ≥ 2 or z-score_K ≤ − 2) or deletion suppression (z-
score_L ≤ − 2 or z-score_K ≥ 2) of doxorubicin cytotox-
icity. Gene deletion enhancement (e.g., mms1-Δ0) and
suppression (e.g., vps54-Δ0) reveal functions that buffer
or confer doxorubicin cytotoxicity, respectively.
Doxorubicin-gene interaction profiles (selected if they
contained L interaction scores with absolute value
greater than 2, in either HLD or HLEG media) were ana-
lyzed by REMc and assessed for GO term enrichment
(Fig. 1f). As a complement to clustering gene interaction
profiles, functional enrichment was analyzed by GTA
(see the “Methods” section), systematically querying all
GO processes, functions, and components (Fig. 1g and
the “Methods” section) with respect to CPPs and War-
burg status. Taken together, REMc and GTA reveal gen-
etic modules that buffer doxorubicin, and how they are
influenced by Warburg metabolism (Fig. 1h).
Doxorubicin cytotoxicity was greater in HLEG than

HLD media, evidenced by the reference strain being
more growth inhibited (Fig. 2a–l, Additional file 1:

Figure S1). The “L” parameter was the most sensitive
CPP, while K reported larger phenotypic effects (Fig. 2m,
n) (Additional file 1: Figure S2). We noted a positive
correlation between doxorubicin-gene interaction in
HLEG and HLD; however, the interaction was media-
specific and more abundant in the context of respiration,
i.e., with HLEG media (Fig. 2o).
We compared our results with two prior studies of

doxorubicin cytotoxicity in the yeast knockout collec-
tions [43, 44]. One study was conducted in SC media
with the haploid (BY4741) YKO library and identified 71
deletion enhancers of cytotoxicity [43]. A second study
reported on the homozygous diploid (BY4743) YKO col-
lection in YPD media, identifying 376 enhancers [44].
Overlap between these studies and ours is shown in Fig.
2p–r and in Additional file 7: Table S9–10. While many
genes overlapped between the studies, differing results
were also observed, possibly attributable to strain
background, media conditions, and methods for scor-
ing interactions [27, 45]. To assess within-study re-
producibility, we sub-cloned four colonies from
glycerol stocks used in the first experiment and
retested doxorubicin-gene interaction, revealing higher
correlation and overall reproducibility within-study
than between-study (Fig. 2s, t).

Identification of functional gene interaction modules
Gene interaction profiles were analyzed by REMc (Fig. 3,
Additional file 1: Figure S3), as described previously (see
the “Methods” section) [34]. GO TermFinder [35] was
used to associate enrichment of biological functions with
particular patterns of doxorubicin-gene interaction
identified by REMc (Fig. 3, Table 1, Additional file
1: Figure S3, and Additional file 5: File C). We ex-
pect that clustering by gene interaction profiles
should, in general, increase GO enrichment [34].
While true overall, as evidenced by the first two
rounds of REMc revealed distinctive profiles of gene
interaction in respiratory vs. glycolytic media (Add-
itional file 1: Figure S3), later round clusters only
sometimes exhibited greater GO term enrichment as

(See figure on previous page.)
Fig. 2 Q-HTCP provides cell proliferation parameters as phenotypes to quantify gene interaction. a, b Average pixel intensity and standard
deviation for 768 reference strain cultures at indicated times after exposure to escalating doxorubicin concentrations in a HLD or b HLEG media.
c, d Semi-log plots after fitting the data plotted above for c HLD or d HLEG to a logistic function (see Fig. 1d). e–l CPP distributions from data
depicted in panels A-D for e–h HLD and i, j HLEG, including L (e, i), K (f, j), r (g, k), and (h, l) AUC. m, n Comparison of doxorubicin-gene
interaction scores using the L vs. K CPP in the context of either m HLD or n HLEG media. Score distributions of knockout (YKO, green),
knockdown/DAmP (YKD, red), and non-mutant parental (Ref, purple) strain cultures are indicated along with thresholds for deletion enhancement
and suppression (dashed lines at ± 2). o Differential doxorubicin-gene interaction (using L as the CPP) for HLD vs. HLEG, classified with respect to
Warburg metabolism as non-specific (NS), respiratory-specific (R), or glycolysis-specific (G) deletion enhancement (Enh) or deletion suppression
(Sup). p–r Comparisons between genome-wide studies of doxorubicin-gene interaction: p Genes reported from Westmoreland et al. (green), Xia
et al. (red), or both studies (purple) are plotted overlying L interaction scores (gray) in HLD vs. HLEG. q, r L interaction scores (gray) for genes
reported by Westmoreland et al. (green), Xia et al. (red), or both studies (purple) in q HLD or r HLEG media. s, t Doxorubicin-gene interaction
from whole-genome (WGS) and validation (V) studies on s HLD or t HLEG media
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other times it was reduced by further clustering,
highlighting the importance of reviewing the heat-
maps and GTF files associated with each clustering
round (see Additional file 8).
GTA score revealed 129 GO terms, 39 of which

were found by REMc/GTF (Table 2 and Additional
file 6: Files A–C). GTA identifies functions of smaller
GO terms, e.g., protein complexes. GTA with K inter-
action scores yielded only 35 GO terms (Additional
file 6: File D), with only 3 being unique from GTA
with L interaction; thus, we focused on L interaction
for GTA analysis. Interactive scatter plots (html files
in which points contain embedded information) were
used to visualize significant GO terms from both

REMc and GTA (Additional file 6: File B). GO term-
specific heatmaps further aided visualization of rela-
tionships between genes and the GO terms (see Figs.
5, 6, 7, 8, 9 and 10 and Additional file 9) by system-
atically displaying, for all genes attributed to a parent
term and its children, uniformity vs. pleiotropy of
interaction effects across different conditions.
In summary, we used REMc, GTA, and GO term-

specific scatterplots and heatmaps to discover gen-
etic modules that alternatively buffer (i.e., deletion
enhancing) or confer (i.e., deletion suppressing)
doxorubicin cytotoxicity and to determine whether
the Warburg-transition exerts influence on their ef-
fects (Fig. 4).

Fig. 3 Characterization of Warburg-differential, doxorubicin-gene interaction profiles. a The union of enhancers (L z-score > 2) or suppressors (L z-
score ≤ 2) from the HLD and HLEG analyses totaled 2802 gene interaction profiles that were subjected to REMc (see the “Methods” section). b, c
The column order is the same for all heatmaps; “+” indicates doxorubicin-gene interaction and “−“ indicates “shift” (K0; see the “Methods” section).
Interactions by K are negative (brown) if enhancing and positive (purple) if suppressing, while the signs of interaction are reversed for L (see the
“Methods” section). The heatmap color scale is incremented by twos; red indicates no growth curve in the absence of doxorubicin. b First round
cluster 1-0-7 has a gene interaction profile indicative of HLEG-specific deletion enhancement. c Second round clusters (2-0.7-X) are ordered left to
right by strength of influence. d The pattern of distributions for the different doxorubicin-gene interaction scores (“+” columns only from panel c)
summarizes respective clusters from panel c. Deletion enhancement is considered to be qualitatively stronger if observed for K in addition to L
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Table 1 GO Terms enriched in REMc clusters
Media INT GTA HLEG GTA HLD Clust GO term name p value Genes

Resp Enh 5.0 2.8 1-0-7 nucleosome organization 1.1E−07 VPS71 RSC2 SWR1 LDB7 HHF1 RSC4 IES1 ISW1 ARP6 RTT106
HIR3 SWC3 HPC2 YAF9 HIR1 HIR2 HTB1 NHP6A SWC5 NHP10

Resp Enh 7.1 0.1 1-0-7 Set1C/COMPASS complex 5.5E−04 SPP1 SDC1 SWD1 SWD3 BRE2

Resp Enh 3.9 − 0.6 1-0-7 histone methylation 4.1E−03 SPP1 SDC1 LGE1 NOP1 SWD3 HHF1 SWD1 BRE2

Resp Enh 3.4 3.0 1-0-7 protein import into
mitochondrial matrix

6.4E−03 MGR2 TOM7 YME1 TOM70 PAM17 TIM17 TIM23 TOM6

Resp Enh 0.6 0.8 2-0.7-1 ER membrane protein complex 4.6E−06 EMC6 EMC4 EMC3 EMC5

Resp Enh 4.6 0.2 2-0.7-2 Sin3-type complex 1.5E−05 RCO1 RXT2 SAP30 PHO23 DEP1 UME1

Resp Enh 5.2 − 0.1 2-0.7-2 Rpd3L complex 7.1E−05 RXT2 SAP30 PHO23 DEP1 UME1

Resp Enh 7.3 1.6 2-0.7-2 Swr1 complex 1.2E−06 SWC3 SWC5 VPS71 YAF9 SWR1 ARP6

Resp Enh 5.9 2.1 2-0.7-2 histone exchange 5.7E−06 SWC3 SWC5 VPS71 YAF9 SWR1 ARP6

Resp Enh 5.0 3.4 2-0.7-2 ATP-dependent chromatin
remodeling

2.4E−04 SWC3 SWC5 VPS71 YAF9 SWR1 LDB7 ARP6

Resp Enh 11.9 0.2 2-0.7-2 HIR complex 6.6E−06 HPC2 HIR1 HIR3 HIR2

Resp Enh 11.4 3.2 2-0.7-2 DNA replication-independent
nucleosome assembly

4.5E−04 HPC2 HIR1 HIR3 HIR2

Resp Enh 11.0 1.7 1-0-8 respiratory chain complex III assembly 4.2E−02 QCR9 CBP4 FMP25

Resp Enh 7.9 0.7 2-0.8-0 DNA topological change 2.6E−02 TOP3 MUS81

Resp Enh 14.9 − 0.4 2-0.8-1 NatC complex 5.6E−03 MAK31 MAK3

Resp Sup − 2.6 − 1.5 2-0.3-1 regulation of fatty acid
beta-oxidation

2.1E−02 ADR1 OAF1 PIP2

Resp Sup − 0.3 6.7 2-0.3-5 translation reinitiation 2.0E−02 TMA20 TIF34 TMA22

Glyc Enh 1.1 0.5 2-0.2-2 ribonucleoprotein complex
subunit organization

1.9E−02 RSA4 HBS1 BRR1 SDO1 RPS17A DHH1 CLF1 RRP7 TIF6
RPS14A RPS27B PRP9

Glyc Sup − 2.2 − 3.0 2-0.4-0 7-methylguanosine cap
hypermethylation

5.6E−03 SWM2 TGS1

Glyc Sup 1.5 − 0.4 2-0.4-2 mRNA 3'-end processing 8.6E−04 MPE1 CDC73 YSH1 KIN28 RNA14 NRD1

Glyc Sup 1.3 0.9 2-0.4-2 mRNA cleavage 3.3E−02 MPE1 YSH1 POP8 RNA14

Glyc Sup − 0.8 − 2.9 2-0.4-2 meiotic chromosome condensation 3.4E−03 SMC2 YCG1 YCS4

Glyc Sup − 1.0 − 2.7 2-0.4-2 condensin complex 2.8E−03 SMC2 YCG1 YCS4

Both Enh 2.9 2.3 1-0-6 cellular response to DNA
damage stimulus

4.1E−08 CTK3 SIT4 RTT109 RVB1 RAD54 MMS22 CDC1 RAD55 PSF3
RAD50 BUD25 RAD51 MRE11 ARP8 ARP4 RAD57 TFB1 CDC7
RAD52 NPL6

Both Enh 5.0 5.0 1-0-6 double-strand break repair
via homologous recombination

2.9E−07 PSF3 RAD50 RAD51 MRE11 RAD54 MMS22
RAD57 CDC7 RAD52 RAD55

Both Enh 7.7 9.7 1-0-6 double-strand break repair via
synthesis-dependent strand annealing

4.3E−06 RAD54 RAD57 RAD51 RAD52 MRE11 RAD55

Both Enh 9.2 5.0 2-0.6-1 ATP-dependent 3'-5' DNA
helicase activity

1.9E−04 RVB1 ARP5 ARP8 ARP4

Both Enh 9.0 2.5 2-0.6-1 Ino80 complex 2.1E−05 RVB1 IES6 ARP5 ARP8 ARP4

Both Enh 3.4 1.6 2-0.6-1 histone acetylation 4.1E−02 RTT109 RVB1 NGG1 SPT20 ARP4

Resp Enh 7.4 1.1 2-0.2-1 protein urmylation 1.1E−03 URM1 URE2 UBA4 ELP2

Both Enh 9.9 3.9 2-0.2-1 Lst4-Lst7 complex 3.1E−02 LST7 LST4

Both Sup − 4.5 − 2.3 2-0.4-1 cellular sphingolipid homeostasis 9.6E−05 VPS53 VPS52 VPS54 VPS51

Both Sup − 12.2 − 7.0 2-0.4-1 fatty acid elongase activity 2.9E−02 ELO3 ELO2

Both Sup − 3.0 − 1.3 2-0.4-1 actin cortical patch localization 8.1E−03 RVS167 LSB3 RVS161 VRP1

Both Sup − 9.0 − 3.5 2-0.4-1 Rvs161p-Rvs167p complex 1.7E−02 RVS167 RVS161

Both Sup − 4.4 − 0.6 2-0.4-1 telomere tethering at nuclear periphery 1.8E−02 NUP60 MLP1 NUP120 NUP133

The table headers are defined as follows: For the column, “Media,” “Resp,” “Glyc,” and “Both” refer to whether the gene interaction type observed for the
REMc cluster associated with the term was prominent in HLEG, HLD, or both media (see Additional file 1: Figure S3). For the column, “INT,” “Enh,” and “Sup”
indicate deletion-enhancing or deletion-suppressing. The column “GTA” refers to GO term average. The column “Clust” refers to REMc ID
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Table 2 GO terms identified by GTA

GO term name Media INT HLEG
GTA

HLEG
gtaSD

HLD
GTA

HLD
gtaSD

Genes REMc
related

p value

HIR complex Resp Enh 11.9 1.5 0.2 0.9 HIR1 HIR2 HPC2 HIR3 2-0.7-2 6.6E−06

histone monoubiquitination Resp Enh 11.4 7.0 0.1 1.2 RAD6 BRE1 NA NA

Ino80 complex Resp Enh 9.0 6.8 2.5 7.7 RVB1 IES6 ARP5 ARP8 ARP4 ARP7
IES5 IES3 NHP10 IES2 IES1 RVB2
IES4 TAF14

3-0.6.1-1 1.5E−06

histone H4 acetylation Resp Enh 8.0 4.8 − 0.8 2.1 ESA1 NGG1 ELP4 EAF3 HAT1 NA NA

mitochondrial respiratory
chain complex III assembly

Resp Enh 11.0 6.8 1.7 2.0 QCR7 CBP6 CBP4 BCS1 QCR9
FMP25 FMP36 CBP3

1-0-8 4.2E−02

mitochondrial respiratory
chain supercomplex assembly

Resp Enh 15.9 0.6 0.8 0.1 RCF1 COX13 1-0-8 7.0E−02

mitochondrial outer membrane
translocase complex

Resp Enh 9.1 6.4 0.7 3.1 TOM22 TOM5 TOM6 TOM70
TOM7 TOM40

NA NA

protein urmylation Resp Enh 7.4 2.6 1.1 0.9 ELP2 URM1 NCS2
UBA4 ELP6 URE2

2-0.2-1 1.1E−03

Elongator holoenzyme complex Resp Enh 8.9 3.6 0.0 0.9 TUP1 IKI3 ELP4 ELP2 ELP3
IKI1 ELP6

3-0.7.2-0 1.4E−04

NatC complex Resp Enh 14.9 1.7 − 0.4 0.6 MAK31 MAK10 MAK3 2-0.8-1 5.6E−03

DNA topological change Resp Enh 7.9 5.7 0.7 2.6 RFA2 TOP3 MUS81
RMI1 TOP1
SGS1 RFA1 RAD4 TOP2

2-0.8-0 2.6E−02

tRNA (m1A) methyltransferase
complex

Resp Enh 17.0 0.8 9.3 17.4 GCD10 GCD14 NA NA

MUB1-RAD6-UBR2 ubiquitin
ligase complex

Resp Enh 12.9 3.1 0.9 0.5 RAD6 MUB1 UBR2 NA NA

malonyl-CoA biosynthetic process Resp Enh 11.1 7.4 1.5 0.1 HFA1 ACC1 NA NA

pyridoxal 5'-phosphate salvage Resp Enh 11.1 8.7 1.5 5.3 PDX3 BUD16 BUD17 NA NA

maintenance of transcriptional
fidelity during DNA-templated
transcription elongation from
RNA polymerase II promoter

Resp Enh 11.1 7.5 − 0.4 4.2 RPB9 DST1 NA NA

RNA polymerase II transcription
corepressor activity

Resp Enh 11.0 7.6 2.2 1.7 SIN3 MED8 SRB7 NA NA

pyruvate dehydrogenase activity Resp Enh 10.6 6.4 2.8 0.9 PDA1 LPD1 PDB1 NA NA

eukaryotic translation initiation
factor 2 complex

Resp Enh 10.3 4.7 8.2 8.7 SUI2 GCD11 NA NA

L-aspartate:2-oxoglutarate
aminotransferase activity

Resp Sup − 3.9 0.5 − 0.9 0.8 AAT2 AAT1 2-0.4-3 5.9E−04

nuclear pore outer ring Resp Sup − 6.3 3.7 1.4 7.6 NUP145 SEH1 NUP84 NUP120
NUP133

3-0.4.1-0 9.7E−02

positive regulation of fatty acid
beta-oxidation

Resp Sup − 2.6 0.5 − 1.5 0.2 OAF1 ADR1 PIP2 2-0.3-1 2.1E−02

EKC/KEOPS complex Resp Sup − 7.9 4.6 − 1.8 1.1 KAE1 CGI121 GON7 BUD32 NA NA

spermine biosynthetic process Resp Sup − 2.6 0.3 − 0.3 0.7 SPE4 SPE2 NA NA

Dom34-Hbs1 complex Glyc Enh 0.3 2.1 2.7 0.3 HBS1 DOM34 NA NA

Ubp3-Bre5 deubiquitination
complex

Glyc Enh − 1.1 3.2 8.8 2.2 BRE5 UBP3 NA NA

Cul4-RING E3 ubiquitin ligase
complex

Glyc Enh 1.8 4.1 4.6 2.3 HRT1 PRP46 SOF1 NA NA

dTTP biosynthetic process Glyc Enh − 1.3 3.2 7.0 0.6 CDC21 CDC8 NA NA

GDP-mannose transport Glyc Enh 1.5 1.9 9.5 5.6 VRG4 HVG1 NA NA

7-methylguanosine cap Glyc Sup − 2.2 1.5 − 3.0 0.9 SWM2 TGS1 2-0.4-0 5.6E−03
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Warburg transition-dependent doxorubicin gene
interaction modules
Despite both longstanding and renewed interest in the im-
portance of the Warburg effect to oncogenesis, whether it
influences cellular responses to chemotherapeutic agents is
unknown. Thus, YKO/KD strains that display differential
resistance to doxorubicin under respiratory (non-ferment-
able HLEG media) vs. glycolytic (fermentable HLD media)
media provide new insight both into genes that function in
pathways that may buffer or promote doxorubicin cytotox-
icity and whether such pathways are potentially influenced
by the Warburg transition. The phenomic assessments de-
scribed below systematically quantify the contribution of
each and every individual yeast gene to doxorubicin cell
proliferation phenotypes. In addition, the influence of the
Warburg effect on this network is detailed by differential
doxorubicin-gene interaction on glycolytic (HLD) vs. re-
spiratory (HLEG) media. In addition to direct implication
of cellular pathways by the identification of genes anno-
tated to their functions, functional enrichment among all
genes was ascertained by GO term enrichment in gene
clusters having similar gene-doxorubicin interaction pro-
files (REMc/GTF) or by systematic analysis of the average
gene interaction value in Gene Ontology terms (GTA).

Respiration-specific gene deletion enhancement
Respiration-specific deletion-enhancing clusters (see Add-
itional file 1: Figure S3: 1-0-7 and 1-0-8) revealed GO
term enrichment for histone modification and chromatin

organization, respiratory chain complex III assembly, pro-
tein import into mitochondria, protein urmylation, the
NatC complex, protein folding in endoplasmic reticulum,
and DNA topological change (Figs. 5, 6, and 7; Additional
file 5: File C). Additional modules were identified using
GTA (Fig. 7c and Additional file 6: File A).

Chromatin organization and histone modification
REMc/GTF and GTA identified several chromatin-related
processes that buffer doxorubicin toxicity in a respiration-
specific manner, including DNA replication-independent
nucleosome assembly, histone exchange, histone deacetyla-
tion, and histone methylation (Figs. 5 and 6).

(i) DNA replication-independent nucleosome assembly (HIR
complex)
REMc/GTF identified the HIR complex (HIR1-3 and
HPC2), which functions as a histone chaperone in chro-
matin assembly and disassembly, in cluster 2-0.7-2
(Additional file 1: Figure S3 and Table 1) [46]. Along
with Asf1 and Rtt106, the HIR complex is involved in
DNA replication-independent (i.e., RNA transcriptional)
histone deposition and regulates transcription of three of
the four histone genes [46–48]. Furthermore, genes encod-
ing for HTA1/HTB1, HHT1/2, and HHF1/2 were also
respiratory-specific deletion enhancers. Asf1 and Rtt106
function in nucleosome assembly in both DNA replication
and DNA replication-independent contexts. Asf1, which
functions in the Rad53-dependent DNA damage response
[49], enhanced doxorubicin toxicity in both respiratory

Table 2 GO terms identified by GTA (Continued)

GO term name Media INT HLEG
GTA

HLEG
gtaSD

HLD
GTA

HLD
gtaSD

Genes REMc
related

p value

hypermethylation

meiotic chromosome
condensation

Glyc Sup − 0.8 0.9 − 2.9 0.9 SMC2 YCG1 SMC4 YCS4 2-0.4-2 3.4E−03

histone deubiquitination Glyc Sup 1.8 1.9 − 3.4 1.1 SEM1 UBP8 SGF73 SGF11 NA NA

HDA1 complex Both Enh 8.9 0.3 4.0 1.1 HDA2 HDA1 HDA3 NA NA

CTDK-1 complex Both Enh 15.6 0.7 3.8 0.9 CTK2 CTK3 CTK1 1-0-8 5.3E−02

Cul8-RING ubiquitin
ligase complex

Both Enh 9.1 4.5 6.1 1.1 MMS22 MMS1 RTT101 HRT1
RTT107

1-0-2 1.0E−01

Lst4-Lst7 complex Both Enh 9.9 1.4 3.9 0.3 LST7 LST4 2-0.2-1 3.1E−02

MCM complex Both Enh 4.2 1.4 4.9 2.6 MCM7 MCM6 MCM5 MCM2
MCM3

NA NA

histone H3-K56 acetylation Both Enh 10.3 7.0 8.6 4.3 RTT109 SPT10 NA NA

fatty acid elongase activity Both Sup − 12.2 2.4 − 7.0 1.1 SUR4 FEN1 2-0.4-1 2.9E−02

GARP complex Both Sup − 6.8 0.9 − 3.5 0.8 VPS53 VPS54 VPS52 VPS51 3-0.4.1-0 6.9E−07

nuclear cap binding
complex

Both Sup − 4.7 0.5 − 3.4 0.5 STO1 CBC2 3-0.4.1-0 9.9E−03

Rvs161p-Rvs167p complex Both Sup − 9.0 0.4 − 3.5 0.2 RVS167 RVS161 3-0.4.1-0 9.9E−03

The table headers are defined as follows: “gtaSD” refers to the standard deviation of GTA, “REMc related” refers to an REMc cluster ID if GTA-identified term was
also found by REMc/GTF, and “p value” reports results from REMc/GTF. See Table 1 for other header definitions
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and glycolytic media, like other DNA repair genes (see
below). In further contrast, genes associated with replica-
tion-dependent nucleosome assembly (RLF2, CAC2, MSI1)
by the chromatin assembly factor complex, CAF-1, [50]
were HLD-specific suppressors (Fig. 5a, b).

Prior studies have reported enhanced doxorubicin
cytotoxicity due to nucleosome disassembly and “chro-
matin trapping” by the FACT complex, referring to
binding and resulting damage to disassembled chromatin
in the context of doxorubicin exposure [20]. POB3-

Fig. 4 GO annotations associated with deletion enhancement or suppression of doxorubicin cytotoxicity, with respect to Warburg-dependence.
Representative GO terms are listed, which were identified by REMc/GTF (orange), GTA (purple), or both methods, for HLD (left, red), HLEG (right,
blue), or both media types (black), and for enhancement (above dashed line) or suppression (below dashed line) of doxorubicin cytotoxicity.
Distance above or below the horizontal dashed line indicates the GTA value for terms identified by REMc or the GTA score if identified by GTA
(see the “Methods” section). See Additional files 5 and 6, respectively, for all REMc and GTA results
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DAmP, the only member of the FACT complex repre-
sented in the YKO/KD library, resulted in suppression of
doxorubicin cytotoxicity (Fig. 5b), presumably by sup-
pressing its effect of trapping and damaging disas-
sembled chromatin.

(ii) Histone exchange (Swr1 complex)
The Swr1 complex (enriched in cluster 2-0.7-2) uses
ATP hydrolysis to replace the H2A nucleosome with the
H2AZ variant [51]. Swr1 complex genes showing
respiration-specific buffering of doxorubicin toxicity

Fig. 5 Respiration increases the role for chromatin organization in buffering doxorubicin toxicity. a GO term-specific heatmaps for chromatin
organization and its child terms (indicated by arrows) clarify related but distinct biological functions that buffer doxorubicin, with respect to
Warburg status. b, c L-based doxorubicin-gene interaction scores associated with GO terms that were enriched in cluster 2-0.7-2. Dashed lines
indicate z-score thresholds for enhancers (> 2) and suppressors (≤ 2). Sub-threshold gene interaction values are plotted, but not labeled
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Fig. 6 (See legend on next page.)

Santos and Hartman Cancer & Metabolism             (2019) 7:9 Page 14 of 42



Fig. 7 Additional respiration-specific deletion-enhancing and deletion-suppressing functions that influence doxorubicin cytotoxicity. Heatmaps
depicting complete phenotypic profiles are the inset, corresponding to the plots of L-based doxorubicin-gene interaction. a Protein folding in
endoplasmic reticulum and the N-terminal protein-acetylating NatC complex are largely respiratory-dependent in their deletion-enhancing
influence. b DNA topological change exerts deletion-enhancing interactions in both respiratory and glycolytic contexts. c GTA-identified terms
tend to be smaller in number and display greater variability in the Warburg dependence among genes sharing the same functional annotation. d
Functions implicated in respiratory-dependent deletion suppression of doxorubicin toxicity

(See figure on previous page.)
Fig. 6 Distinct histone modifications differentially influence doxorubicin cytotoxicity. a Rpd3L and Rpd3S complexes exert strong HLEG-specific
doxorubicin-enhancing influence relative to other Sin3-type histone deacetylases and the HDA1 complex. b In contrast to histone deacetylation
(panel a), histone acetylation exhibits deletion enhancement that is Warburg-independent. c Histone H3K4 methylation by the Set1C/COMPASS
complex, which requires histone mono-ubiquitination of H2B by the Bre1/Rad6 complex, is opposed by Jhd2, a histone H3K4 demethylase. The
respiration-specific deletion-enhancing interactions suggest the Warburg transition can protect tumors promoted by certain types of chromatin
deregulation from doxorubicin
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included RVB1, SWC3, SWC5, ARP6, SWR1, VPS71, and
VPS72 (Fig. 5c). Accordingly, the H2AZ variant, Htz1,
which is enriched at most gene promoters in euchroma-
tin [52–54], was also an HLEG-specific deletion enhan-
cer. The Swr1 complex is recruited for repair of dsDNA
breaks, where the H2AZ variant is incorporated [55];
however, the interaction profile of the Swr1 complex
more closely resembles other respiratory specific en-
hancers involved in transcriptional regulation, whereas
dsDNA-break repair by homologous recombination
buffered doxorubicin toxicity independent of Warburg
context (see cluster 1-0-6 from Additional file 1: Figure
S3 and Table 1). The Swr1 complex can also inhibit sub-
telomeric spread of heterochromatin by impeding SIR-
dependent silencing [56]. Consistent with knockout of
Swr1 promoting silencing and having a deletion-
enhancing effect, deletion of SIR1, SIR3, or SIR4 (which
disrupts chromatin silencing) also exerted respiratory-
specific suppression of doxorubicin toxicity (Fig. 5c).

(iii) Histone deacetylation (Sin3-type and HDA1 complexes)
Deletion of genes functioning in the Rpd3L and Rpd3S
histone deacetylase complexes (HDAC) was associated
with strong respiratory enhancement of doxorubicin tox-
icity (cluster 2-0.7-2, Fig. 6a); however, genes constitut-
ing the Hda1 complex exerted weaker effects, but in
both respiratory and glycolytic media (Fig. 6a and Table
2). The yeast Rpd3 deacetylase histone complexes are
homologous to mammalian class I Rpd3-like proteins
(Hdac1-3,8), while the yeast Hda1 complex is homolo-
gous to mammalian class II Hda1-like proteins (Hdac4-
5,7,9) [57]. Hda1 and Rpd3 complexes both deacetylate
histones H3 and H4; however, deletion of RPD3 vs.
HDA1 revealed different degrees of H4 lysine 5 and K12
hyperacetylation [58], implicating this functional distinc-
tion in Warburg-differential doxorubicin response.
Histone acetylation was GO-enriched in cluster 2-0.6-1,

which displayed a Warburg-independent gene interaction
profile (Additional file 1: Figure S3 and Table 1). GTA
analysis confirmed H3K56 acetylation (SPT10 and
RTT109) and histone H3 acetylation (TAF9 and HFI1) as
media-independent, but also histone H4 acetylation
(EAF3, ESA1, NGG1, and ELP4), which was relatively
respiratory-specific in its deletion enhancement (Fig. 6b
and Table 2). Rtt109 promotes H3K56 acetylation, which
is associated with elongating RNA polymerase II [59], and
can be persistent in the setting of DNA damage [60].
Warburg-independent deletion enhancement suggests its
role in DNA repair becomes invoked.
The SAS acetyltransferase complex was deletion sup-

pressing; SAS2 and SAS5 were HLEG-specific, and SAS4
was HLD-specific (Fig. 6b). The Sas2 acetyltransferase
complex creates a barrier against spread of heterochro-
matin at telomeres by opposing Sir protein deacetylation

via effects on histone H4K16 [61]. The deacetylating SIR
proteins (SIR1, SIR3, SIR4) were also HLEG-specific sup-
pressors (Fig. 5c), suggesting dynamic regulation of telo-
meric histones (not simply acetylation or deacetylation),
or perhaps a function of Sas2 acetyltransferase that is in-
dependent of SIR protein functions, confers doxorubicin
cytotoxicity in respiring cells.

(iv) Histone methylation (Set1C/COMPASS complex)
Histone methylation differentially influences gene tran-
scription, depending on the histone residues modified
and the number of methyl groups added [62]. The
Set1C/COMPASS complex, which catalyzes mono-, di-,
and tri-methylation of H3K4 [63–66], was enriched in
cluster 1-0-7 (Additional file 1: Figure S3 and Table 1).
All genes tested from the Set1C/COMPASS complex
(SPP1, SDS1, SWD1, SWD3, BRE2, SHG1; SET1 not in
YKO/KD) were EG-specific deletion enhancers (Fig. 6c).
The Set1C/COMPASS complex and H3K4 trimethyla-
tion localize at transcription start sites of actively tran-
scribed genes [67, 68]. Furthermore, the Rad6-Bre1
complex, which mono-ubiquitinates histone H2B before
Set1C/COMPASS methylates histone H3K4 [69–71],
shared the same interaction profile, cross-implicating the
Set1C/COMPASS and Rad6-Bre1 functions (Fig. 6c).
The Rad6-Bre1 complex is additionally involved in the
DNA damage response checkpoint to activate Rad53
[72]; however, its HLEG-specific enhancing profile was
more closely shared with transcriptional regulation mod-
ules, indicating its latter role is better related. JHD1 and
JHD2 are JmjC domain family histone demethylases that
act on H3-K36 and H3-K4 respectively, and their dele-
tion suppression interactions are further evidence that
histone methylation contributes to buffering doxorubicin
cytotoxicity, especially in a respiratory context (Fig. 6c).
Based on the findings above, it appears buffering of

doxorubicin-mediated cellular toxicity by some transcription-
associated chromatin regulators is alleviated by the transition
from respiratory to glycolytic metabolism, whereas buffering
by those more associated with DNA repair is relatively inde-
pendent of metabolic context.

Mitochondrial functions
The greater number of deletion-enhancing doxorubicin-
gene interactions in HLEG media, relative to HLD media
(Fig. 2o), caused us to examine genes annotated to mito-
chondrial function more systematically. Many mitochon-
drial gene deletion strains grew very poorly on HLEG
media and exhibited reduced carrying capacity on HLD
media, as would be associated with petite mutants. Com-
pletely respiratory-deficient mutants clustered together
in 1-0-0; however, many mitochondrial mutants main-
tained some or all respiratory capacity. For example, the
respiratory chain complex III assembly and protein
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import into mitochondrial matrix terms were enriched
in deletion-enhancing clusters, 1-0-7 and 1-0-8 (Table 1
and Additional file 1: Figures S3-4). Some of these
strains appeared respiratory sufficient, yet the genes
were required to buffer doxorubicin cytotoxicity under
respiratory conditions. For example, evolutionarily con-
served genes functioning in complex IV assembly
(RCF1/YML030W and COA6) reached carrying capacity
on HLEG media, yet exerted strong deletion enhance-
ment of doxorubicin growth inhibition (Additional file 1:
Figure S4A). In contrast, HLEG-specific deletion-
enhancing complex IV assembly components (COA2,
CMC1, RCF2) and complex III assembly genes (FMP25,
FMP36, QCR9, CBP4) were either not conserved in
humans or exhibited strong respiratory defects (in ab-
sence of doxorubicin) (Additional file 1: Figure S4A-B).
These findings appear to establish relevance of the yeast
model to studies in cardiomyocytes, for which it was re-
ported that doxorubicin toxicity is exacerbated by deple-
tion of cytochrome c or cardiolipin, leading to reduced
workload capacity, and accelerated aging [73, 74]. Like-
wise, functionally conserved (TOM70, TIM10, TIM17,
TIM23, and MGR2) and yeast-specific (TOM6 and
TOM7) genes in protein import into mitochondrial
matrix buffered doxorubicin cytotoxicity (Additional file
1: Figure S4C-E), perhaps relating to increased oxidative
stress [75], which also enhances doxorubicin toxicity in
mammalian cells [8, 11].
Systematic examination of the GO annotation, mito-

chondrion (Additional file 1: Figure S5), revealed several
additional respiratory-competent gene-deletion strains
exhibiting HLEG-specific enhancing interactions.
COX13 encodes subunit VIa of cytochrome c oxidase,
which functions with Rcf1 in the formation of respira-
somes (also called “supercomplexes”) [76, 77]. Others in-
cluded COX8, encoding subunit VIII of cytochrome c
oxidase [78]; MPC1, encoding a mitochondrial pyruvate
carrier [79, 80]; MME1, encoding an inner mitochondrial
membrane magnesium exporter [81]; OMS1, an inner
membrane protein predicted to have methyltransferase
activity [82]; GUF1, a matrix-localized GTPase that
binds mitochondrial ribosomes and influences cyto-
chrome oxidase assembly [83]; and MIC10 (YCL057C-
A), encoding a component of the MICOS complex, func-
tioning in inner membrane organization and membrane
contact site formation [84].

Protein folding, localization, and modification pathways
Protein biogenesis and modification pathways enriched
in HLEG-specific enhancement clusters included the
endoplasmic reticulum membrane complex (EMC) (2-
0.7-1), protein urmylation (2-0.2-1), and N-terminal
acetylation by the NatC complex (2-0.8-1) (Additional
file 1: Figure S3 and Table 1).

(i) Protein folding in endoplasmic reticulum (ER membrane
protein complex)
The ER membrane complex (EMC1-6, Fig. 7a) functions
in protein folding in the ER [85] and together with the
ER-mitochondria encounter structure (ERMES), the
EMC enables ER-mitochondria phosphatidylserine trans-
fer and tethering [86]. The EMC physically interacts with
the mitochondrial translocase of the outer membrane
(e.g., TOM5, 6, 7, 22, 70; described above) for the
process of ER-mitochondria phosphatidylserine transfer
[86]. The shared respiratory-specific, deletion-enhancing
profiles suggest cooperative functions of the EMC and
mitochondrial outer membrane translocase (Additional
file 1: Figure S4D) in buffering doxorubicin cytotoxicity.
In contrast to the EMC, genes involved in the ERMES
complex (1-0-0; Additional file 5: File B-C) were essen-
tial for respiration, and thus, their influence on doxo-
rubicin cytotoxicity could not be addressed with
knockout mutants in HLEG media.

(ii) Protein urmylation, Elongator complex, and tRNA
wobble uridine thiolation
ELP2, UBA4, URM1, and URE2 clustered together in 2-
0.2-1, constituting GO-enrichment in protein urmyla-
tion, the covalent modification of lysine residues with
the ubiquitin-related modifier, Urm1 [87]. Other protein
urmylation genes, ELP6, NCS2, and NCS6/YGL211W,
displayed similar interaction profiles and clustered
together in 1-0-7 (Fig. 7a). ELP2 and ELP6 also function
in the Elongator holoenzyme complex (IKI1, IKI3, ELP2,
ELP3, ELP4, and ELP6), associated with similar inter-
action profiles (Additional file 1: Figure S6). URM1,
UBA4, NCS2, and NCS6 further function in tRNA wob-
ble position uridine thiolation, where Urm1 functions as
a sulfur carrier [88–90]. Genes uniquely annotated to
these terms (IKI1, IKI3, ELP3, ELP4, TUM1, URE2) also
displayed related profiles (Additional file 1: Figure S6).
Thus, protein urmylation, Elongator complex function,
and tRNA wobble thiolation appear to be distinct mod-
ules, comprised of shared genes, buffering doxorubicin
specifically in a respiratory context.

(iii) N-terminal acetylation by the NatC complex
The NatC complex (Mak3, Mak10, and Mak31) specific-
ally acetylates methionine-starting hydrophobic N-
terminal proteins (Met-Leu, Met-Phe, Met-Ile, Met-Tyr)
[91], neutralizing positive charge on the alpha-amino
group, and impeding turnover by ubiquitination or other
modifications [92]. N-acetylation occurs on around half
of the soluble yeast proteome and over 80% in humans
[93]. NatC-mediated N-terminal acetylation facilitates
Golgi or inner nuclear membrane localization of some
[94–97], but not most proteins [98]. The three genes en-
coding the NatC complex clustered together (Fig. 7a);
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however, NatC substrates were not enriched among
doxorubicin-gene interactions (Additional file 7: Table
S11). Perhaps a select few NatC targets or a novel func-
tion for NatC underlies its compensatory effects.

DNA topological change
DNA topological change, which refers to remodeling the
turns of a double stranded DNA helix, was enriched in
cluster 2-0.8-0 (Additional file 1: Figure S3 and Table 1).
Representative genes were SGS1, TOP1, RFA1, RMI1,
TOP3, MMS4, and MUS81 (Fig. 7b). Types I and II
topoisomerases resolve supercoiling during replication
and transcription [99, 100]. Top1 is a type IB topoisom-
erase, which relaxes positive and negative supercoils
[101, 102], compared to Top3, a type IA topoisomerase
that specifically acts on negative supercoiling [103]. The
Mms4-Mus81 endonuclease has overlapping functions
with Top3 and Sgs1 in DNA repair [104]; however, their
respective influences on doxorubicin toxicity were quan-
titatively distinct in both respiratory and glycolytic con-
texts, with a greater requirement for the MMS4/MUS81
than SGS1, TOP3, RFA1, and RMI1 (Fig. 7b); the latter
four, functioning together for decatenation and unknot-
ting of dsDNA [105].

GTA reveals additional biological functions that buffer
doxorubicin toxicity
GTA is a method complementary to REMc/GTF for dis-
covering GO functions in Q-HTCP-derived phenomic
data. Whereas GTF scores GO enrichment among genes
within a cluster, GTA is independent of clustering and
systematically assesses all genes in every GO term for
interaction (see the “Methods” section).
GTA revealed 71 respiratory-specific deletion-enhancing

GO terms, 24 of which were also found by REMc/GTF (see
Additional file 6: File A). Strong enhancing terms (GTA
value > 10) with functions relatively distinct from those
identified above by REMc were tRNA (m1A) methyltrans-
ferase complex, MUB1-RAD6-UBR2 ubiquitin ligase com-
plex, malonyl-CoA biosynthetic process, pyridoxal 5'-
phosphate salvage, maintenance of transcriptional fidelity
during DNA-templated transcription elongation from RNA
polymerase II promoter, RNA polymerase II transcription
corepressor activity, pyruvate dehydrogenase activity, and
eukaryotic translation initiation factor 2 complex (Fig. 7c).
Most terms identified by GTA consisted of 2–3 genes and
did not necessarily cluster together by REMc.

Respiration-specific gene deletion suppression of
doxorubicin cytotoxicity
Clusters exhibiting respiration-specific gene deletion
suppression revealed GO term enrichment for regulation
of fatty acid beta-oxidation (cluster 2-0.3-1) and transla-
tion reinitiation (cluster 2-0.3-5) (Additional file 1:

Figure S3 and Table 1). By GTA analysis, the EKC/
KEOPS complex and spermine biosynthetic process were
additionally found to confer HLEG-specific deletion sup-
pression (Fig. 7d and Table 2).

Regulation of fatty acid beta-oxidation
ADR1, OAF1, and PIP2 were grouped together in cluster
2-0.3-1 (Additional file 1: Figure S3 and Table 1), dis-
playing HLEG-specific gene deletion suppression (Fig.
7d). The Pip2-Oaf1 complex binds to oleate response el-
ements and, along with ADR1, regulates transcription of
peroxisomal genes [106, 107]. Doxorubicin inhibits beta-
oxidation of long-chain fatty acids in cardiac tissues,
which is reversed by supplementing with propionyl-L-car-
nitine, and alleviates effects of doxorubicin cardiotoxicity
[108]. Thus, the yeast model may be informative for inves-
tigating related gene networks in greater depth.

Translation reinitiation
In the respiratory-specific deletion suppressing cluster 2-
0.3-5 (Additional file 1: Figure S3), TMA20, TMA22, and
TIF34 represented enrichment for translation reinitia-
tion, which is necessary after termination of short up-
stream open reading frames (uORFs) [109] (Fig. 7d).
Some uORFs function in translational regulation of a
downstream protein; for example, GCN4 expression is
regulated in response to amino acid starvation [109].
However, using the Welsh two sample t test, we
found no significant difference in means of inter-
action scores between the distribution of proteins reg-
ulated or not by uORFs [110] (p value = 0.8357)
(Additional file 7: Table S12).

Spermine biosynthetic process
Loss of spermine biosynthesis, specifically SPE2 (S-ade-
nosylmethionine decarboxylase) and SPE4 (spermine
synthase), suppressed doxorubicin toxicity in HLEG
media (Fig. 7d). The pathways of polyamine metabolism
and their physiologic effects on cancer are complex [111,
112], and although our data suggest spermine metabol-
ism contributes to doxorubicin cytotoxicity, how this oc-
curs mechanistically and specifically in respiring cells
awaits further study [113].

EKC/KEOPS complex
GTA revealed the EKC/KEOPS complex (CGI121,
GON7, and BUD32) as HLEG-specific deletion suppress-
ing (Fig. 7d). The EKC/KEOPS complex is involved in
threonyl carbamoyl adenosine (t6A) tRNA modification
[114], which strengthens the A-U codon–anticodon
interaction [115]. EKC/KEOPS has also been character-
ized with respect to telomere maintenance [116] and
transcription [117]. Deletion of GON7, BUD32, or to a
lesser extent, CGI121, inhibited cell proliferation in the
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absence of doxorubicin treatment, indicating that trans-
lational and/or transcriptional activity of the EKC/
KEOPS complex function contributes to doxorubicin
sensitivity.

Glycolysis-specific gene deletion enhancement of
doxorubicin cytotoxicity
HLD-specific deletion enhancement of doxorubicin
cytotoxicity could represent lethal vulnerabilities that
emerge when a tumor undergoes the Warburg transi-
tion. In this regard, several genes, but few enriched GO
terms, were identified by REMc (Additional file 1: Figure
S3, clusters 1-0-5, 2-0.3-0, and 2-0.2-2; Additional file 5:
File A). Ribonucleoprotein complex subunit organization
was suggested (Table 1); however, the term-specific
heatmap revealed doxorubicin-gene interaction within
this cellular process to be pleiotropic (Additional file 1:
Figure S7).

Glycolysis-specific deletion-enhancing terms identified by
GTA
GTA analysis revealed HLD-specific deletion-enhancing
genes encoding the Cul4-RING E3 ubiquitin ligase, the
Dom34-Hbs1 complex, and the Ubp3-Bre5 deubiquiti-
nase. GDP-Mannose Transport and dTTP biosynthesis
were also revealed (Fig. 8a and Additional file 6: File A).
SOF1, HRT1, and PRP46 were computationally inferred
to form the Cul4-RING E3 ubiquitin ligase complex
[118]. Yeast Sof1 is an essential protein that is required
for 40s ribosomal biogenesis, and overexpression of its
human ortholog, DCAF13/WDSOF1, is associated with
aggressive tumors and poorer survival in hepatocellular
carcinoma [119]. DOM34/PELO and HBS1/HBS1L facili-
tate recycling of stalled ribosomes by promoting

dissociation of large and small subunits through a
process called no-go decay [120–122]. Knockdown by
siRNA of either WDSOF1 or HBS1L was synthetic lethal
in a KRAS-driven tumor model [123]. The Ubp3-Bre5
deubiquitination complex regulates anterograde and
retrograde transport between the ER and Golgi [124,
125]. Vrg4 and Hvg1 transport GDP-mannose into the
Golgi lumen for protein glycosylation [126, 127]. Re-
duced dTTP pools, evidenced by CDC8/DTYMK and
CDC21/TYMS, can increase doxorubicin cytotoxicity in
cancer cell lines [128]. The human homologs of UBP3,
CDC8, and CDC21 were identified in genome-wide
siRNA synthetic interaction studies in cancer cell line
models [129–131].
For several examples above, like SOF1/DCAF13, genes

could be targeted as both a driver of the tumor and as a
sensitizer to doxorubicin. To systematically identify all
candidate vulnerabilities specific to glycolytic tumor cells
(not constrained by GO enrichment), we filtered the
overall data set, limiting the list to genes with human
homologs and to YKO/KD strains that were growth suf-
ficient (low shift on HLD) (Additional file 1: Figure S8).
The human homologs, along with functional descrip-
tions, are provided in Additional file 10: Table S13.

Glycolysis-specific gene deletion suppression of
doxorubicin cytotoxicity
Deletion suppression points to genes that could poten-
tially increase doxorubicin toxicity if overexpressed. GTA
identified histone deubiquitination (Table 2), and HLD-
specific deletion suppression clusters (Additional file 1:
Figure S3, clusters 2-0.1-0, 2-0.4-0, 2-0.4-2, and 3-0.3.3-1)
had GO term enrichment for terms related to mRNA pro-
cessing and meiotic chromosome condensation.

Fig. 8 Glycolysis-specific enhancement and suppression of doxorubicin cytotoxicity. Doxorubicin-gene interaction profiles for HLD-specific GO
terms identified by GTA are depicted for a deletion enhancement and b deletion suppression
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Histone deubiquitination
Histone deubiquitination was identified by GTA and in-
cludes SUS1, SGF11, SGF73, UBP8, and SEM1 (Fig. 8b);
all except SEM1 are part of the DUBm complex, which
mediates histone H2B deubiquitination and mRNA ex-
port [132]. Loss of histone H2B ubiquitination resulting
in HLEG-specific enhancement (Fig. 6c) is consistent
with loss of the DUBm deubiquitinase being suppressing.
Together, they implicate regulation by histone ubiquiti-
nation as a mechanism of doxorubicin response. The hu-
man homologs of UBP8, USP22, and USP51 were
identified in an RNAi screen for resistance to ionizing
radiation [133].

RNA processing
HLD-specific deletion suppression clusters (2-0.4-0, 2-
0.4-2; Additional file 1: Figure S3) were enriched for
mRNA processing-related terms including mRNA 3’ end
processing, mRNA cleavage, and 7-methylguanosine cap
hypermethylation (Table 1), but the term-specific heat-
maps revealed pleiotropic gene interaction profiles (Add-
itional file 1: Figure S9). SWM2/YNR004W and TGS1
function in 7-methylguanosine (m7G) cap trimethyla-
tion (cluster 2-0.4-0); however, the tgs1-Δ0 allele also
exerted deletion suppression in a respiratory context
(Fig. 8b). m7G cap trimethylation protects small nuclear
RNAs (snRNAs), and small nucleolar RNAs (snoRNAs)
from degradation by exonucleases [134, 135], and pro-
motes efficient pre-rRNA processing and ribosome bio-
genesis [136].

Meiotic chromosome condensation
SMC2, SMC4, YCG1, and YCS4 constitute the nuclear
condensin complex, which functions in chromosome
condensation and segregation. The condensin complex
associates with chromosomal sites bound by TFIIIC and
the RNA Pol III transcription machinery [137], where it
facilitates clustering of tRNA genes at the nucleolus
[138] (Fig. 8b). The condensin complex has been sug-
gested as a potential therapeutic target for cancer [139],
and human homologs YCG1/NCAPG2, YCS4/NCAPD2,
and SMC4/SMC4 are synthetic lethal with the Ras onco-
gene [123].

Warburg transition-independent doxorubicin gene-
interaction modules:
Since cancers may have both respiratory and glycolytic cell
populations, targeting Warburg-independent interactions
could be especially efficacious, as described below.

Deletion enhancement
Cluster 1-0-6 (Additional file 1: Figure S3) had a strong
deletion-enhancing profile in both metabolic contexts
with GO term enrichment for DNA repair (Fig. 9), as

well as histone acetylation (discussed above, Fig. 6b).
GTA analysis additionally revealed the Lst4-Lst7, the
Cul8-RING ubiquitin ligase, and MCM complexes
(Fig. 9b).

DNA repair
Warburg-independent, deletion-enhancing pathways in-
cluded homologous recombination and break-induced
replication repair (Fig. 9a), along with the Ino80 complex
(Fig. 9b), the latter explained by its role of histone
acetylation in the recruitment of DNA repair machinery
to dsDNA break sites [51]. The Ino80 complex influ-
ences doxorubicin response in fission yeast [140, 141],
further suggesting evolutionary conservation of this
interaction, and thus potential relevance to mammalian
systems [142]. DNA repair pathways, such as those in-
volving RAD52 and INO80, are evolutionarily conserved,
involved in genome instability and tumorigenesis [143],
and predictive of therapeutic response in some cancers
[144], thus representing potential tumor-specific bio-
markers for chemotherapeutic efficacy.

Complexes identified by GTA
Warburg-independent deletion-enhancing modules
identified by GTA were weaker, in many cases, than the
dsDNA break repair pathways found by REMc, some of
which had strong K parameter interactions (Fig. 9, Add-
itional file 9). GTA-identified terms included (1) the
Cul8-RING ubiquitin ligase complex, which is encoded
by RTT101, RTT107, MMS1, MMS22, and HRT1 and
functions in replication-associated DNA repair [145].
Cul8/Rtt101, in fact, contributes to multiple complexes
that regulate DNA damage responses, including Rtt101-
Mms1-Mms22, which is required for Eco1-catalyzed
Smc3 acetylation for normal sister chromatid cohesion
establishment during S phase [146]; (2) The Lst4-Lst7
complex, which functions in general amino acid perme-
ase (GAP1) trafficking [147], threonine uptake, and
maintenance of deoxyribonucleotide (dNTP) pools [26],
clustered with thr1-Δ0 (threonine biosynthesis) in 2-0.2-
1 (Additional file 5: File B); and (3) the mini-
chromosome maintenance (MCM) complex, which
licenses and initiates DNA replication [148], was evi-
denced by the mcm2-DAmP, mcm3-DAmP, and mcm5-
DAmP YKD strains (Fig. 9b). Work in pea plants showed
that doxorubicin inhibits the MCM6 DNA helicase ac-
tivity [149]. Prior genome-wide experiments with doxo-
rubicin did not analyze YKD mutants; thus, the MCM
complex highlights the utility of the DAmP collection in
drug-gene interaction studies.

Media-independent deletion suppression
Loss of genes functioning in processes that augment
doxorubicin toxicity results in suppression of its growth
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inhibitory effect. This was suggested in both respiratory
and glycolytic contexts for sphingolipid homeostasis, telo-
mere tethering at nuclear periphery, and actin cortical
patch localization (Additional file 1: Figure S3, clusters
2-0.4-1 and 2-0.3-3). Conversely, their overexpression in
cancer could potentiate toxicity and therapeutic efficacy.

Sphingolipid homeostasis and metabolism
From cluster 2-0.4-1, VPS51, VPS52, VPS53, and VPS54
(Fig. 10a) form the Golgi-associated retrograde protein

(GARP) complex, which is required for endosome-to-
Golgi retrograde vesicular transport. GARP deficiency
results in accumulation of sphingolipid synthesis inter-
mediates [150]. Also, from this cluster came fatty acid
elongase activity (FEN1/ELO2 and SUR4/ELO3), which
when deficient leads to reduced ceramide production
and phytosphingosine accumulation [151, 152].
Since the GARP genes and fatty acid elongase activity

genes function together in sphingolipid metabolism, we
searched all genes annotated to this term and found

Fig. 9 Warburg-independent deletion enhancement of doxorubicin cytotoxicity. Gene interaction profiles showing deletion enhancement in both
respiratory and glycolytic context included: a double-strand break repair via homologous recombination, and its child terms (indicated by arrows),
and b the Cul8-RING ubiquitin ligase, Ino80 complex, Lst4-7 complex, and MCM complex
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other media-independent suppressors to include TSC3,
LIP1, SUR1, SUR2, IPT1, and SKN1 (Fig. 10a). Doxorubi-
cin treatment induces accumulation of ceramide [12,
13], which mediates anti-proliferative responses and
apoptosis in yeast and human and appears to mechanis-
tically underlie the influence of this gene group [153]
(Additional file 1: Figure S10). These findings were fur-
ther supported by the deletion enhancer, SCH9, which
negatively regulates ceramide production by inducing
ceramidases and negatively regulating ISC1 (Fig. 10a)
[154]. Multidrug-resistant HL-60/MX2 human promye-
locytic leukemia cells are sensitized to doxorubicin by N,
N-dimethyl phytosphingosine [155].

Taken together, the model provides genetic detail re-
garding how disruption of sphingolipid metabolism in-
creases resistance to doxorubicin and that this occurs in
a Warburg-independent manner, seemingly by reducing
apoptosis associated with doxorubicin-induced ceramide
overproduction [12, 156, 157].

Telomere tethering at nuclear periphery
Enrichment for telomere tethering at nuclear periph-
ery in cluster 2-0.4-1 was comprised of NUP60,
NUP170, MLP1, and ESC1. Although growth deficient
on HLD media, NUP84, NUP120, and NUP133 also
exerted deletion suppression in HLEG (Fig. 10b).

Fig. 10 Warburg-independent deletion suppression of doxorubicin cytotoxicity. Doxorubicin-gene interaction profiles and L-interaction plots for
genes associated with deletion suppression in HLEG or HLD media, including a cellular sphingolipid homeostasis, along with its parent term, lipid
homeostasis, and related term sphingolipid metabolism and b actin cortical patch localization and telomere tethering at nuclear periphery
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Nuclear pore functions include coordinating nuclear-
cytoplasmic transport and localizing proteins and/or
chromosomes at the nuclear periphery, which contrib-
utes to DNA repair, transcription, and chromatin
silencing [158]. Thus, deletion of nuclear pore genes
could influence doxorubicin resistance by multiple po-
tential mechanisms involving altering chromatin
states, transcriptional regulation, maintenance of telo-
meric regions, and DNA repair. Doxorubicin-gene
interaction profiles for all nuclear pore-related genes
are provided in Additional file 1: Figure S11A.

Actin cortical patch localization
Cluster 2-0.4-1 was enriched for actin cortical patch
localization, including RVS167, LSB3, RVS161, and
VRP1 (Fig. 10b). Related terms (Arp2/3 protein complex
and actin cortical patch) exhibited similar doxorubicin-
gene interaction profiles, including ARC15, ARC18,
ARC35, INP52, INP53, ARP2, ARP3, GTS1, RSP5, and
FKS1 (see Additional file 1: Figure S11B-C). This result
corroborates studies in mouse embryonic fibroblasts
where deletion of ROCK1 increased doxorubicin resist-
ance by altering the actin cytoskeleton and protecting
against apoptosis [159, 160]. Additional literature indi-
cates the importance of actin-related processes for doxo-
rubicin cytotoxicity [161–163], highlighting the utility of
yeast phenomics to understand these effects in greater
depth.

Respiratory-deficient doxorubicin-gene
interaction modules
From cluster 1-0-0, we noted that respiratory deficient
YKO/KD strains (those not generating a growth curve
on HLEG) also had low K and/or increased L “shift”
values on HLD, as would be expected of petite strains
[164]. Strains in this category tended to display deletion
enhancement (Additional file 1: Figure S3) and function
primarily in mitochondrial processes (Additional file 5: File
C; see GO enrichment for cluster 1-0-0 and derivative clus-
ters), including mitochondrial translation, mitochondrion-
ER tethering, protein localization into mitochondria, mito-
chondrial genome maintenance, respiratory chain complex
assembly, and proton transport. Compromise of mitochon-
drial respiration leading to sensitization of cells to doxo-
rubicin is of interest given recent findings that some
glycolytic cancers are respiratory deficient [165, 166].

Phenomics-based predictions of doxorubicin-gene
interaction in cancer cell lines
We next investigated how measures of enhancing and
suppressing interactions from the yeast phenomic model
could serve to predict and prioritize candidate effectors
of cancer cell line sensitivity and transcriptomic data
[167, 168]. Differential gene expression, by itself, has

been clearly shown to be a poor predictor of whether
protein function affects proliferative response to a par-
ticular drug [169]. Yeast doxorubicin-gene interaction
was matched by homology to differential gene expression in
doxorubicin-sensitive cancer cell lines, using PharmacoGx
[39] and biomaRt [40, 41]) in conjunction with the
GDSC1000 [170, 171] or gCSI [172, 173] databases (Fig. 11).
Differential gene expression analysis was performed for indi-
vidual tissues and for data aggregated for all tissues. Yeast
gene deletion enhancers were used to predict causality for
human homologs underexpressed in doxorubicin-sensitive
cancer cell lines, termed “UES.” Conversely, yeast gene dele-
tion suppressors were matched to human homologs overex-
pressed in doxorubicin sensitive cells, termed “OES”
(Additional file 11).
There was higher correspondence for yeast gene inter-

actions with differential gene expression in the gCSI vs.
the GDSC database, partially explained by the greater
number of genes reported in gCSI than GDSC (Add-
itional file 12). Such differences are possibly due to sen-
sitivity for measuring gene expression arising from
distinct platforms used to measure gene expression and
cell cytotoxicity, and different sample sizes in the re-
spective data (https://pharmacodb.pmgenomics.ca/
drugs/273). The gCSI data reported more UES and OES
genes than GDSC (Additional file 11: Files B-E and Add-
itional file 12) and consequently greater overlap with the
yeast phenomic data.
Warburg status was not available for the cancer cell

lines, so we prioritized the analysis by focusing on
Warburg-independent yeast gene interactions having
homology to differentially expressed genes in both the
gCSI and GDSC datasets, aggregated across all tissues.
These constraints (agreement across all tissues, from
both databases, and in both yeast media types) led to pre-
diction of eight UES (ARP4/ACTL6B, ERG13/HMGCS2,
PTC1/PPM1L, SCH9/RPS6KB2, SEC11/SEC11C, SEC7/
ARFGEF2, SEC7/IQSEC3, and SIS2/PPCDC) and 18 OES
genes (ARP2/ACTR2, CDC3/SEPT6, CKA2/CSNK2A2,
DBR1/DBR1, DOA1/PLAA, EFT2/EEF2, HTS1/HARS,
KIN28/CDK7, MAP 1/METAP1, RPL16B/RPL13A, RPL32/
RPL32, RPL34A/RPL34, RPL40B/ZFAND4, RPS6A/RPS6,
SSE1/HSPA4, STO1/NCBP1, TRZ1/ELAC2, and UBC4/
UBE2D1) as having causal influences on the doxorubicin
sensitivity phenotype (Fig. 11c, d).
As detailed in Tables 3 and 4, we expanded the ana-

lysis to genes representative of GO term enrichments re-
vealed by the yeast phenomic model having human
homologs differentially expressed across all cancer tis-
sues, but without restricting by Warburg-independence
or gCSI/GDSC co-evidence. Results for individual tissues
are also provided in Additional file 11: File A. We con-
sidered whether correlations between doxorubicin-gene
interaction in yeast with pharmacogenomic results could
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Fig. 11 (See legend on next page.)
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be enhanced by particular combinations of the data from
this study and prior yeast studies. To briefly summarize,
there was a higher correlation for deletion enhancers
under respiratory (27%) than glycolytic (19%) conditions,
and considering both media, there was higher corres-
pondence of deletion suppressors (43%) than deletion
enhancers (25%). The complete data are provided in
Additional file 7 and Additional file 11 to enable com-
parisons between data sets, and example comparisons
are summarized in Additional file 12.

Deletion enhancers with UES homologs
Concordance between deletion-enhancing doxorubicin-
gene interaction in yeast and UES observed for the cor-
responding human homologs in cancer cells suggests
synergistic targets for inhibition and biomarkers of gen-
etic vulnerabilities that may increase therapeutic efficacy
for doxorubicin (Table 3 and Fig. 11c). Many of these
genes function in processes identified by the yeast phe-
nomic model (Tables 1, 2, 3, and 4) and have annotated
roles in cancer biology.
Doxorubicin-enhancing interactions that were UES in

both gCSI and GDSC included ACTL6B, identified as a
candidate tumor suppressor gene in primary hepatocel-
lular carcinoma tissue [174]; PPM1L, which regulates
ceramide trafficking at ER-Golgi membrane contact sites
[175] and exhibits reduced expression in familial aden-
omatous polyposis [176]; RPS6KB2, which was UES in
the breast, ovary, and bone in gCSI, while RPS6KA1, A2,
A5, and A6 were UES in select tissues in both databases
(Additional file 11: File A); SEC11/SEC11C, which is up-
regulated in response to hypoxia in non-small cell lung
cancer tissue [177] and for which deletion enhancement
was stronger in glycolytic media (Additional file 1: Fig-
ure S8); SEC7/ARFGEF2 (alias BIG2) which exhibits in-
creased gene and protein expression in pancreatic
cancer [178], and shRNA knockdown of ARFGEF2 can
reduce Burkitt’s lymphoma cell survival [179].

We expanded the analysis above by matching yeast
gene deletion enhancers to human UES genes in either
database, i.e., not requiring that genes be significant in
both datasets (Fig. 12e, f). The result highlighted
chromatin-related buffering processes, including nucleo-
some assembly (HTA1, HTB1, HHF1, HHF2, HHT1,
HHF1), histone exchange (SET2/SETBP1 and SWR1/
SRCAP), and histone modifiers (BRE1, HDA1, RCO1)
(Fig. 11e and Table 3). Other functions predicted by the
yeast model to buffer doxorubicin toxicity in cancer cells
included DNA topological change (MUS81, SGS1), mito-
chondrial maintenance (MGR2, TOM70), protein acetyl-
ation (MAK3), and metabolism (SFA1, ERG13, SOD1).
MGR2/ROMO1 is involved in protein import into the

mitochondrial matrix and overexpression of ROMO1 has
been associated with poor prognosis in colorectal [181]
and non-small cell lung cancer patients [182]. MAK3/
NAA30, a component of the NatC complex (Fig. 8a),
induces p53-dependent apoptosis when knocked down
in cancer cell lines [183]. MUS81 knockdown enhances
sensitivity of colon cancer lines to epirubicin (doxorubi-
cin analog) [184], cisplatin, and other chemotherapy
agents by activating the CHK1 pathway (Fig. 7b) [180].
The glycolysis-specific deletion enhancer, SFA1, has

seven human homologs, of which three (ADH4,
ADH1A, and ADH6) were UES in gCSI data (Add-
itional file 1: Figure S8). High expression of ADH1A or
ADH6 was predictive of improved prognosis for pan-
creatic adenocarcinoma [185], and high expression of
ADH1A or ADH4 had improved prognosis for non-
small cell lung cancer [186]. The ERG13 homolog,
HMGCS1, has been suggested as a synthetic lethal tar-
get for BRAFV600E-positive human cancers [187], and
HMGCS2 plays a role in invasion and metastasis in
colorectal and oral cancer [188]. These data suggest
doxorubicin treatment may have anti-tumor efficacy
specifically in glycolytic tumors with reduced expres-
sion of SFA1 and ERG13 homologs.

(See figure on previous page.)
Fig. 11 Use of the yeast phenomic model to predict doxorubicin-gene interaction in cancer cells. a BiomaRt was used to assign yeast-human
gene homology for the GDSC and gCSI datasets. b PharmacoGx was used to retrieve differential gene expression for doxorubicin sensitive cell
lines from the gCSI and GDSC databases, searching data from individual tissues or across data aggregated from all tissues. Human genes that are
underexpressed in doxorubicin sensitive cell lines (UES) with yeast homologs that are deletion enhancers are predicted to be causal in their
phenotypic association. Similarly, human genes that are overexpressed in doxorubicin sensitive cancer cell lines (OES) would be predicted to be
causal if the yeast homolog was a deletion suppressor in the phenomic dataset. c, d Boxes inside of Venn diagrams indicate the genes for which
gene interaction profiles are shown in the heatmaps below. Gene names are to the right of heatmaps, with blue labels indicating genes
identified in both the GDSC and gCSI databases and black labels indicating genes found only in the gCSI dataset. The category of homology (see
panel a) is indicated in the left column of each heatmap. c Deletion enhancement by yeast genes predicts human functions that buffer
doxorubicin cytotoxicity, and thus, reduced expression of homologs in cancer cell lines is predicted to increase doxorubicin sensitivity. d Deletion
suppression by yeast genes predicts functions that mediate cytotoxicity and is shown for human homologs having significant association of
overexpression in cancer cell lines with increased doxorubicin sensitivity. e, f Genes representing enhancing or suppressing modules from REMc
or GTA that are e UES or f OES in at least one of the two databases. Red labels indicate genes found only in the GDSC database. Additional file
11 reports all results from the analysis described above, including assessment of individual tissues
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Table 3 Yeast-human homologs with deletion enhancement and UES across all tissues

hGene yGene DB Fig. GO term HLD L|K HLEG L|K GDSC
pval

gCSI
pval

Ref H Description hGene

ACTL6B ARP4 Both 12E Ino80 Complex 8.3|− 10 16.4|− 12.6 3.3E−02 3.8E−02 [172] 2 Actin like 6B

HMGCS2 ERG13 Both S7B N/A 34.8|− 21.4 3.7|− 3.3 2.4E−02 7.9E−04 [186] 2 3-Hydroxy-3-methylglutaryl-CoA
synthase 2

PPM1L PTC1 Both 12C N/A 15.2|− 4.7 14.7|− 13 3.1E−04 1.6E−02 [173, 174] 2 Protein phosphatase, Mg2+/Mn2+
dependent 1L

RPS6KB2 SCH9 Both 12E Sphingolipid
Metabolic Process

6|− 3.7 8.8|− 9.8 3.5E−02 4.2E−03 NA 3 Ribosomal protein S6 kinase B2

SEC11C SEC11 Both S7B N/A 11.6|− 1.3 2.8|0 3.5E−04 3.5E−04 [175] 2 SEC11 homolog C, signal peptidase
complex subunit

ARFGEF2 SEC7 Both 12C N/A 2.9|0 2.6|0.8 7.5E−03 1.5E−08 [176, 177] 2 ADP ribosylation factor guanine
nucleotide exchange factor 2

IQSEC3 SEC7 Both 12C N/A 2.9|0 2.6|0.8 7.5E−03 4.9E−02 NA 2 IQ motif and Sec7 domain 3

PPCDC SIS2 Both 12C N/A 7.3|− 3.5 12.1|− 9.8 3.9E−02 4.7E−03 NA 2 Phosphopantothenoylcysteine
decarboxylase

CCS CCS1 gCSI NA N/A 2.4|− 0.4 5.6|− 3.7 3.4E−01 1.2E−02 NA 2 Copper chaperone for superoxide
dismutase

HMGCS1 ERG13 gCSI S7B N/A 34.8|− 21.4 3.7|− 3.3 9.5E−01 1.4E−02 [185] 3 3-Hydroxy-3-methylglutaryl-CoA
synthase 1

HDAC6 HDA1 gCSI 7A HDA1 Complex 5.2|− 1 9.1|− 1.8 9.1E−01 1.7E−03 [235, 236] 2 Histone deacetylase 6

MUS81 MUS81 gCSI 8B DNA Topological
Change

5.2|− 2.4 15.9|− 11.1 6.9E−02 1.9E−04 [181, 182] 2 MUS81 structure-specific
endonuclease subunit

SGK2 SCH9 gCSI 12E Sphingolipid
Metabolic Process

6|− 3.7 8.8|− 9.8 4.6E−01 8.5E−04 NA 1 SGK2, serine/threonine kinase 2

CCS SOD1 gCSI 12E N/A 6.2|− 0.5 8.1|− 10.7 3.4E−01 1.2E−02 NA 2 Copper chaperone for superoxide
dismutase

SOD1 SOD1 GDSC 12E N/A 6.2|− 0.5 8.1|− 10.7 4.3E−02 7.9E−01 NA 2 Superoxide dismutase 1

PELO DOM34 gCSI 9A Dom34-Hbs1
Complex

2.5|− 0.7 − 1.2|1.1 NA 1.7E−02 NA 2 Pelota mRNA surveillance and
ribosome rescue factor

ADH1A SFA1 gCSI 12E N/A 4.8|0 0.9|− 0.3 1.1E−01 2.9E−02 [183, 184] 2 Alcohol dehydrogenase 1A (class I),
alpha polypeptide

ADH4 SFA1 gCSI 12E N/A 4.8|0 0.9|− 0.3 3.6E−01 3.6E−03 [184] 3 Alcohol dehydrogenase 4 (class II), pi
polypeptide

ADH6 SFA1 gCSI 12E N/A 4.8|0 0.9|− 0.3 8.6E−01 3.3E−03 [183] 1 Alcohol dehydrogenase 6 (class V)

HIST1H3D HHT1 Both 6A-B Nucleosome
Assembly

0.4|− 0.2 15|− 10.2 4.2E−02 2.1E−02 NA 2 Histone cluster 1 H3 family
member d

HIST1H2BN HTB1 Both 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 4.0E−02 3.0E−06 NA 2 Histone cluster 1 H2B family
member n

HIST2H2BE HTB1 Both 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 4.0E−02 2.3E−08 NA 2 Histone cluster 2 H2B family
member e

SETBP1 SET2 Both 6A,C Histone exchange 1.3|− 1.6 5.4|− 2.5 7.3E−07 3.0E−04 NA 3 SET binding protein 1

RNF40 BRE1 gCSI 7C Histone
Monoubiquitination

− 0.7|0.5 6.5|− 4.9 7.4E−01 8.5E−03 NA 2 Ring finger protein 40

HIST1H4D HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 NA 8.9E−03 NA 3 Histone cluster 1 H4 family
member d

HIST1H4H HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 8.6E−02 2.8E−06 NA 3 Histone cluster 1 H4 family
member h

HIST1H4I HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 NA 3.8E−02 NA 2 Histone cluster 1 H4 family
member i

HIST1H4K HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 NA 8.0E−03 NA 3 Histone cluster 1 H4 family
member k

HIST2H4A HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 NA 4.8E−02 NA 3 Histone cluster 2 H4 family
member a

HIST2H4B HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 NA 3.7E−03 NA 3 Histone cluster 2 H4 family
member b
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Table 3 Yeast-human homologs with deletion enhancement and UES across all tissues (Continued)

hGene yGene DB Fig. GO term HLD L|K HLEG L|K GDSC
pval

gCSI
pval

Ref H Description hGene

HIST4H4 HHF1 gCSI 6A-B Nucleosome
Assembly

− 0.6|0.2 13.7|− 3.8 5.4E−02 2.4E−02 NA 3 Histone cluster 4 H4

HIST1H4D HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 NA 8.9E−03 NA 3 Histone cluster 1 H4 family
member d

HIST1H4H HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 8.6E−02 2.8E−06 NA 3 Histone cluster 1 H4 family
member h

HIST1H4I HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 NA 3.8E−02 NA 3 Histone cluster 1 H4 family
member i

HIST1H4K HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 NA 8.0E−03 NA 3 Histone cluster 1 H4 family
member k

HIST2H4A HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 NA 4.8E−02 NA 3 Histone cluster 2 H4 family
member a

HIST2H4B HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 NA 3.7E−03 NA 3 Histone cluster 2 H4 family
member b

HIST4H4 HHF2 gCSI 12E Chromatin Assembly
or Disassembly

− 1.6|0.4 4.3|− 0.1 5.4E−02 2.4E−02 NA 3 Histone cluster 4 H4

HIST1H2AE HHT1 gCSI 6A-B Nucleosome
Assembly

0.4|− 0.2 15|− 10.2 NA 1.1E−02 NA 3 Histone cluster 1 H2A family
member e

HIST1H3E HHT1 gCSI 6A-B Nucleosome
Assembly

0.4|− 0.2 15|− 10.2 NA 1.3E−02 NA 3 Histone cluster 1 H3 family
member e

HIST1H3H HHT1 gCSI 6A-B Nucleosome
Assembly

0.4|− 0.2 15|− 10.2 NA 6.8E−03 NA 3 Histone cluster 1 H3 family
member h

HIST1H2AC HTA1 gCSI 12E Chromatin Assembly
or Disassembly

− 3.5|0.8 13.5|− 5.2 7.1E−01 2.9E−05 NA 3 Histone cluster 1 H2A family
member c

HIST1H2AD HTA1 gCSI 12E Chromatin Assembly
or Disassembly

− 3.5|0.8 13.5|− 5.2 3.7E−01 5.8E−03 NA 3 Histone cluster 1 H2A family
member d

HIST1H2AG HTA1 gCSI 12E Chromatin Assembly
or Disassembly

− 3.5|0.8 13.5|− 5.2 5.6E−01 1.4E−02 NA 3 Histone cluster 1 H2A family
member g

HIST1H2AK HTA1 gCSI 12E Chromatin Assembly
or Disassembly

− 3.5|0.8 13.5|− 5.2 NA 6.3E−04 NA 3 Histone cluster 1 H2A family
member k

HIST2H2AA3 HTA1 gCSI 12E Chromatin Assembly
or Disassembly

− 3.5|0.8 13.5|− 5.2 NA 2.6E−02 NA 3 Histone cluster 2 H2A family
member a3

HIST2H2AA4 HTA1 gCSI 12E Chromatin Assembly
or Disassembly

− 3.5|0.8 13.5|− 5.2 NA 5.3E−03 NA 3 Histone cluster 2 H2A family
member a4

H2BFM HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 NA 3.0E−02 NA 3 H2B histone family member M

H2BFWT HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 3.3E−01 6.5E−04 NA 3 H2B histone family member W,
testis specific

HIST1H2BC HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 9.8E−01 5.3E−05 NA 3 Histone cluster 1 H2B family
member c

HIST1H2BD HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 4.7E−01 3.0E−06 NA 3 Histone cluster 1 H2B family
member d

HIST1H2BE HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 NA 2.5E−04 NA 3 Histone cluster 1 H2B family
member e

HIST1H2BF HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 NA 5.3E−03 NA 3 Histone cluster 1 H2B family
member f

HIST1H2BG HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 NA 5.8E−04 NA 3 Histone cluster 1 H2B family
member g

HIST1H2BJ HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 9.2E−02 1.5E−03 NA 3 Histone cluster 1 H2B family
member j

HIST1H2BK HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 NA 9.0E−04 NA 3 Histone cluster 1 H2B family
member k

HIST1H2BO HTB1 gCSI 6A-B Nucleosome
Assembly

0.2|− 0.6 7.8|− 5.8 NA 2.9E−02 NA 3 Histone cluster 1 H2B family
member o
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Deletion suppressors with OES homologs
Genes that promote toxicity of a drug could lead to
increased sensitivity if overexpressed in cancer cell
lines or, correspondingly, deletion suppression by
yeast phenomic analysis. Choosing chemotherapeutic
agents for patients based on their tumors exhibiting
high expression of genes known to increase sensitivity
represents a targeted strategy to increase therapeutic
efficacy and could be particularly effective if the
sensitizing overexpressed genes happen to also be
drivers [189]. Human genes that were OES and hom-
ologous to yeast deletion suppressors are highlighted
in Table 4 and Fig. 11d. ARP2/ACTR2 is a member
of the Arp2/3 protein complex (see Additional file 1:
Figure S11C), and silencing of the Arp2/3 protein
complex reduces migration of pancreatic cancer cell
lines [190]. EEF2 protein is overexpressed in mul-
tiple cancer types, where shRNA knockdown inhibits
growth [191]. CDK7 overexpression in breast [192,
193] and gastric [194] cancer is predictive of poor
prognosis. RPL34 overexpression promotes prolifera-
tion, invasion, and metastasis in pancreatic [195],
non-small cell lung [196], and squamous cell carcin-
oma [197], while RPL32 was also overexpressed in a
prostate cell cancer model [198]. In contrast to
Rps6k family members being UES/deletion enhan-
cing, Rps6 was OES/deletion suppressing in ovarian
tissue. RPS6 overexpression portends reduced

survival for patients with renal carcinoma [199] and
hyperphosphorylation of Rps6 confers poor prognosis
in non-small cell lung cancer [200]. Overexpression
of UBE2D1 is associated with decreased survival in
lung squamous cell carcinoma tissue [201], and nu-
merous additional ubiquitin-conjugating enzyme fam-
ily members were OES in analysis of individual
tissues (Additional file 11: File A).
We expanded the analysis, similar to the way described

above for the deletion enhancers, by relaxing the match-
ing criteria in order to identify additional deletion sup-
pressing pathways revealed by the yeast model
(Additional file 11). The extended analysis identified
yeast-human conserved functions in metabolism (SPE2,
SPE4, VPS53, ELO2, ELO4), histone demethylation
(JHD1, JHD2), translation reinitiation (TMA22, TIF32),
the condensin complex (YCG1, YCS4, SMC2), and telo-
mere tethering at the nuclear periphery (NUP170)
(Table 4 and Fig. 11f). SPE2/AMD1 is required for
spermidine and spermine biosynthesis, and upregulation
of AMD1 by mTORC1 rewires polyamine metabolism in
prostate cancer cell lines and mouse models [202].
VPS53, a component of the GARP complex involved in
sphingolipid homeostasis, is a tumor suppressor in hepa-
tocellular carcinoma [203–205]; additionally, transfec-
tion with VPS53 transcript induces apoptosis and
sensitizes cervical cancer cells to doxorubicin [206], con-
sistent with our model. Inhibition of ELOVL6

Table 3 Yeast-human homologs with deletion enhancement and UES across all tissues (Continued)

hGene yGene DB Fig. GO term HLD L|K HLEG L|K GDSC
pval

gCSI
pval

Ref H Description hGene

NAA30 MAK3 gCSI 8A NatC Complex 0.2|− 0.5 16.6|− 11.6 8.5E−01 2.9E−02 [180] 2 N (alpha)-acetyltransferase 30,
NatC catalytic subunit

ROMO1 MGR2 gCSI S3C Protein import into
mitochondrial matrix

0|− 0.2 10.3|0.1 7.1E−02 4.1E−02 [178, 179] 2 Reactive oxygen species
modulator 1

AIRE RCO1 gCSI 7A Rpd3S Complex 0.9|− 0.5 7.9|− 4.4 5.5E−01 1.3E−03 NA 3 Autoimmune regulator

ASH1L SET2 gCSI 6A,C Histone exchange 1.3|− 1.6 5.4|− 2.5 6.6E−01 5.5E−04 NA 3 ASH1 like histone lysine
methyltransferase

RECQL4 SGS1 gCSI 8B DNA Topological
Change

− 0.2|0.7 6.1|− 2.5 7.3E−01 3.2E−02 NA 3 RecQ like helicase 4

RECQL5 SGS1 gCSI 8B DNA Topological
Change

− 0.2|0.7 6.1|− 2.5 2.7E−01 3.0E−04 NA 1 RecQ like helicase 5

SRCAP SWR1 gCSI 7A Swr1 complex 0.4|− 0.5 7.3|− 6.2 NA 5.1E−04 NA 3 Snf2 related CREBBP activator protein

UNC45B TOM70 gCSI S3C Protein import into
mitochondrial matrix

0.8|− 0.4 12.4|− 0.3 7.4E−01 1.6E−02 NA 2 unc-45 myosin chaperone B

MOCS3 UBA4 gCSI 8A protein urmylation 1.5|− 3.3 8.1|− 3.4 8.0E−01 3.0E−02 NA 1 Molybdenum cofactor
synthesis 3

EMC3 EMC3 GDSC 8A ER Membrane Protein
Complex

1.5|− 0.8 5.6|− 1.8 1.1E−02 NA NA 2 ER membrane protein complex
subunit 3

EMC4 EMC4 GDSC 8A ER Membrane Protein
Complex

− 0.1|− 0.3 6.2|− 1.6 2.6E−02 NA NA 2 ER membrane protein complex
subunit 4

For column “DB”: “gCSI,” “GDSC”, or “Both” indicate UES in the gCSI, GDSC, or both databases. Column “Fig.” refers to specific figures. Columns “HLD
L|K” and “HLEG L|K” contain the L and K interaction scores for HLD and HLEG media, respectively. “GDSC pval” and “gCSI pval” refer to the significance
of differential gene expression in the respective databases. “Ref” refers to relevant literature citations. “H” refers to homology type: “1,” “2,” and “3”
indicate 1:1, 1:many, and many:many, respectively
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Table 4 Yeast-human homologs with deletion suppression and OES across all tissues

hGene yGene DB Fig GO term HLD L|K HLEG L|K GDSC
pval

gCSI
pval

Ref H Description hGene

ACTR2 ARP2 Both 12D Arp2/3 Protein
Complex

− 3.7|1.4 − 3.3|− 6.9 3.2E−02 6.0E−05 [188] 1 ARP2 actin-related protein 2
homolog

SEPT6 CDC3 Both 12D N/A − 2.1|0.7 − 2.6|0.3 1.7E−04 2.8E−05 NA 1 Septin 6

CSNK2A2 CKA2 Both 12D N/A − 5.5|1 − 4|1.2 4.3E−03 3.6E−03 NA 2 Casein kinase 2 alpha 2

DBR1 DBR1 Both 12D N/A − 2.1|0.6 − 3.5|1 4.3E−02 9.8E−04 NA 1 Debranching RNA lariats 1

PLAA DOA1 Both 12D N/A − 2.2|0.7 − 7.7|1.9 2.6E−02 1.5E−04 NA 3 Phospholipase A2 activating
protein

EEF2 EFT2 Both 12D N/A − 2.7|0.2 − 2.1|1.1 1.9E−02 9.7E−06 [189] 2 Eukaryotic translation elongation
factor 2

HARS HTS1 Both 12D N/A − 2.4|0.6 − 2.9|0.5 4.1E−03 1.6E−03 NA 1 Histidyl-tRNA synthetase

CDK7 KIN28 Both 12D N/A − 2.2|1.1 − 2.5|− 1.2 2.4E−02 2.6E−04 [190–192] 3 Cyclin-dependent kinase 7

METAP1 MAP 1 Both 12D N/A − 4.7|3.3 − 4.2|− 0.6 8.9E−03 2.3E−02 NA 1 Methionyl aminopeptidase 1

RPL13A RPL16B Both 12D N/A − 4.5|3.7 − 5.8|1.4 1.5E−03 9.5E−05 NA 2 Ribosomal protein L13a

RPL32 RPL32 Both 12D N/A − 3.9|1 − 11.3|1.1 6.9E−03 3.6E−03 [196] 2 Ribosomal protein L32

RPL34 RPL34A Both 12D N/A − 4.8|2.3 − 7.2|2.4 1.5E−02 4.4E−03 [193–195] 3 Ribosomal protein L34

ZFAND4 RPL40B Both 12D N/A − 4.1|1.1 − 5.7|1.1 3.7E−02 1.7E−02 NA 2 Zinc finger AN1-type containing 4

RPS6 RPS6A Both 12D N/A − 5.7|1.8 − 6|2.6 2.0E−04 2.5E−07 [197, 198] 2 Ribosomal protein S6

HSPA4 SSE1 Both 12D N/A − 6.3|3 − 13.7|4.4 1.5E−02 4.2E−07 NA 2 Heat shock protein family A
(Hsp70) member 4

NCBP1 STO1 Both 12D N/A − 3|1.7 − 4.3|1.3 2.3E−03 3.5E−04 NA 2 Nuclear cap-binding protein
subunit 1

ELAC2 TRZ1 Both 12D N/A − 2.3|0.6 − 2.6|0.1 1.1E−05 1.5E−08 NA 3 ElaC ribonuclease Z 2

UBE2D1 UBC4 Both 12D N/A − 4.6|2.2 − 12.3|2.6 1.0E−02 8.1E−03 [199] 1 Ubiquitin conjugating enzyme
E2 D1

TPRKB CGI121 gCSI 12F EKC/KEOPS Complex − 2.2|− 0.8 − 7.7|2.1 1.3E−01 7.6E−04 NA 1 TP53RK binding protein

ELOVL6 ELO2 gCSI 12F Fatty Acid Elongase
Activity

− 7.7|1.4 − 13.9|4.1 5.1E−01 2.7E−02 [205] 2 ELOVL fatty acid elongase 6

ELOVL6 ELO3 gCSI 12F Fatty Acid Elongase
Activity

− 6.3|1.3 − 10.5|1.9 5.1E−01 2.7E−02 [205] 1 ELOVL fatty acid elongase 6

NUP155 NUP170 gCSI 12F Telomere tethering at
the nuclear periphery

− 3.7|0.6 − 6.5|1.3 1.0E−01 4.4E−02 [215–217] 1 Nucleoporin 155

SSRP1 POB3 gCSI 12F FACT Complex − 4.1|1.2 − 5.1|1.4 6.0E−02 2.2E−06 [20] 2 Structure-specific recognition
protein 1

TGS1 TGS1 gCSI 12F 7-methylguanosine
cap hypermethylation

− 2.4|2.6 − 3.3|0.7 8.5E−02 2.0E−03 NA 2 Trimethylguanosine synthase 1

VPS53 VPS53 gCSI 12F Cellular sphingolipid
homeostasis

− 2.4|1.8 − 5.8|1.4 2.0E−01 2.4E−02 [201–204] 2 VPS53, GARP complex subunit

USP22 UBP8 Both 12F histone
deubiquitination

− 2|0.8 0.3|0.3 2.3E−02 1.2E−02 NA 1 Ubiquitin-specific peptidase 22

SMC2 SMC2 gCSI 12F meiotic chromosome
condensation

− 3.5|1.2 0.4|− 0.9 1.1E−01 4.3E−02 [138] 3 Structural maintenance of
chromosomes 2

NCAPG YCG1 gCSI 12F meiotic chromosome
condensation

− 2|0.8 − 0.8|− 0.6 7.9E−01 9.2E−06 [138] 3 Non-SMC condensin I complex
subunit G

NCAPD2 YCS4 gCSI 12F meiotic chromosome
condensation

− 2.4|0.8 − 1.7|− 0.9 2.3E−01 1.7E−03 NA 2 Non-SMC condensin I complex
subunit D2

USP44 UBP8 GDSC 12F histone
deubiquitination

− 2|0.8 0.3|0.3 4.1E−04 6.1E−01 NA 2 Ubiquitin specific peptidase 44

KDM2B JHD1 Both 12F Histone
Demethylation

0.2|− 0.2 − 2.3|1.9 4.6E−02 3.5E−02 [206–208] 1 Lysine demethylase 2B
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(homologous to yeast ELO2 and ELO3) in mice reduces
tumor growth and increases survival [207]. The histone
demethylase, JHD1/KDM2B, is overexpressed in pancre-
atic cancer [208] and is associated with poor prognosis
in glioma [209] and triple-negative breast cancer [210].
A second homolog, JHD2/JARID2, is required for tumor
initiation in bladder cancer [211]. The yeast model also
predicts causality underlying OES associated with genes
involved in translation reinitiation, TMA22/DENR
(translation machinery associated) and TIF32/EIF31.
DENR-MCT-1 regulates a class of mRNAs encoding
oncogenic kinases [212–214], and its overexpression in
hepatocellular carcinoma is associated with metastasis
[215]. TMA22/DENR also exerts evolutionarily con-
served influence on telomeric function and cell prolif-
eration [216]. YCG1/NCAPG and SMC2/SMC2 are
components of the condensin complex, which are
overexpressed in cancer [139]. NUP170/NUP155,
which functions in telomere tethering at the nuclear
periphery (Fig. 10b), is hyper-methylated in associ-
ation with breast cancer [217, 218], where its reduced
expression contributes to a signature for bone metas-
tasis [219].

Discussion
A relatively comprehensive and quantitative phenotypic
model of the gene-drug interaction network underlying
the cell proliferative response to doxorubicin is pre-
sented. We demonstrate how a yeast phenomic model is
predictive of genetic vulnerabilities to a cytotoxic agent
that arise in cancer cells due to differential gene expres-
sion. Although an unbiased, experimental model of gen-
etic interaction is largely descriptive with respect to

molecular mechanisms, we propose it to nevertheless be
a unique and powerful resource to model genotype-
phenotype networks at the cellular and organismal level.
Genes that promote or buffer a cell proliferative re-
sponse to defined perturbations report on molecular
networks that potentially influence a variety of pheno-
types [220, 221]. For disease phenotypes involving evolu-
tionarily conserved cellular processes, such as cell cycle
and DNA repair (e.g., cancer) or folding of biogenesis
of polytopic membrane proteins (e.g., cystic fibrosis),
phenomic models can account for biological context
and potential genetic modifiers of disease [25, 28],
serving to further inform the disease literature while
also generating in an unbiased experimental manner
new hypotheses that can be tested across species [26,
222–225].
To create the doxorubicin-gene interaction model

for cancer, we used advances in Q-HTCP for phe-
nomic analysis of the YKO/KD library and developed
customized GO tools to mine cancer pharmacogen-
omics data via homology information. The informa-
tion resulting from the model generates new
hypotheses, further integrating the yeast and cancer
literature, thus providing new insights for investiga-
tors with complementary expertise to further clarify
the mechanistic basis of the observed gene-drug inter-
action network [27]. We propose that it may be fur-
ther possible to leverage yeast phenomics to advance
precision oncology models somewhat independently of
molecular mechanisms; i.e., if genetic interactions that
determine the response to cytotoxic chemotherapy
can be successfully predicted, it may not be necessary
to detail all interactions mechanistically in order for

Table 4 Yeast-human homologs with deletion suppression and OES across all tissues (Continued)

hGene yGene DB Fig GO term HLD L|K HLEG L|K GDSC
pval

gCSI
pval

Ref H Description hGene

AMD1 SPE2 Both 12F spermine biosynthetic
process

0.2|− 0.2 − 2.8|0.5 1.7E−02 1.5E−04 [200] 1 Adenosylmethionine
decarboxylase 1

SMS SPE4 gCSI 12F spermine biosynthetic
process

− 0.8|0.4 − 2.4|1 NA 3.9E−02 NA 1 Spermine synthase

EIF3I TIF34 gCSI 12F translation reinitiation 1.2|0 − 3.9|1.4 8.2E−01 7.1E−05 NA 2 Eukaryotic translation initiation
factor
3 subunit I

STRAP TIF34 gCSI 12F translation reinitiation 1.2|0 − 3.9|1.4 6.7E−01 9.1E−03 NA 2 Serine/threonine kinase
receptor-associated protein

DENR TMA22 gCSI 12F translation reinitiation − 1.1|0.6 − 6.4|1.9 4.0E−01 1.9E−02 [210–214] 1 Density regulated re-initiation
and release factor

PHF2 JHD1 GDSC 12F Histone
Demethylation

0.2|− 0.2 − 2.3|1.9 1.9E−03 6.8E−02 NA 1 PHD finger protein 2

JARID2 JHD2 GDSC 12F Histone
Demethylation

− 0.2|0.1 − 3.2|1 1.9E−03 2.5E−02 [209] 2 Jumonji and AT-rich interaction
domain containing 2

For column “DB”: “gCSI,” “GDSC,” or “Both” indicate UES in the gCSI, GDSC, or both databases. Column “Fig.” refers to specific figures. Columns “HLD L|K” and
“HLEG L|K” contain the L and K interaction scores for HLD and HLEG media, respectively. “GDSC pval” and “gCSI pval” refer to the significance of differential gene
expression in the respective databases. “Ref” refers to relevant literature citations. “H” refers to homology type: “1,” “2,” and “3” indicate 1:1, 1:many, and
many:many, respectively
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the model to be a useful tool for decision-making in
precision oncology.
Many genes are implicated in oncogenesis and in

chemotherapeutic response, with varying degrees of
tissue-specific influence and yeast-human homology.
The ability to assess mutation, differential gene ex-
pression, and other molecular correlates of cancer
and chemotherapeutic efficacy is growing, but the
direct assessment of drug-gene interaction (i.e.,
phenotypic/cell proliferative responses) remains a
challenge due to the complex genetics and tissue-
specific aspects of cancer. In contrast to this
daunting complexity, yeast is a single-cell eukaryotic
organism that is uniquely amenable to precise and
genome-wide measures of drug-gene interaction, and
from which fundamental contributions to our
understanding of human disease are well established
[226–230]. We show that yeast, which naturally ex-
hibits aerobic glycolysis, can be used to explore the
potential of the Warburg effect to influence the anti-
cancer efficacy of doxorubicin, and thus potentially
other chemotherapeutic agents [1, 231]. From an un-
biased systems perspective, we observed that a less
extensive genetic network is required to buffer
doxorubicin in glycolytic vs. respiring cells. The
doxorubicin-gene interaction network suggested GO-
enriched genetic vulnerabilities that may occur in
cancer cells due to genomic instability, including de-
fective chromatin regulation, protein folding and
modification, mitochondrial function, and DNA topology;
while impeding the ability to buffer doxorubicin toxicity
in a respiratory context, such vulnerabilities can be

relieved of by the Warburg transition to glycolytic metab-
olism. Also specific to respiratory conditions, the yeast
model predicts that doxorubicin is less toxic to cells if
functions for fatty acid beta-oxidation, spermine metabol-
ism, and translation reinitiation are compromised by mu-
tation (Fig. 12 and Tables 1 and 2). On the other hand,
cells that transition to glycolytic metabolism need dTTP
biosynthesis and protein complexes including the
Cul4-RING E3 ubiquitin ligase, and the Ubp3-Bre5
deubuiquitinase, as well as Dom34-Hbs1, which func-
tions in ‘no-go’ mRNA decay, in order to buffer
doxorubicin (Fig. 12 and Table 2). These findings in-
dicate that the metabolic status of cancer cells further
influences the vulnerabilities to chemotherapy that
may emerge from genetic alterations occurring in
cancer. Thus, along with monitoring Warburg status
in conjunction with cancer genetic profiling, yeast
phenomic models that predict potential influences of
Warburg status on chemotherapy response and cancer
vulnerabilities emerging from somatic mutations
unique to each individual patient, may help better
predict therapeutic outcomes and thus be useful to
develop more efficacious treatment algorithms.
Since the Warburg metabolic status is not monitored

clinically, we thought the most relevant genes from the
yeast phenomic model for predicting genetic modifiers
of doxorubicin cytotoxicity in pharmacogenomics data
would be those influencing doxorubicin cytotoxicity
similarly in either metabolic context. Functionally
enriched genes in this category represented DNA repair
and histone H3-K56 acetylation, along with deletion
suppressing pathways, including sphingolipid

Fig. 12 Yeast phenomic model for the influence of Warburg metabolism on doxorubicin-gene interaction. Shaded areas indicate influences that
are relatively Warburg-dependent, being red or green if their effects are relatively specific to a respiratory or glycolytic context, respectively.
Processes that influence doxorubicin cytotoxicity in a more Warburg-independent manner are unshaded. Arrowheads indicate processes for
which genes predominantly transduce doxorubicin toxicity, based on their loss of function suppressing its growth inhibitory effects. Conversely, a
perpendicular bar at the line head indicates a process that buffers doxorubicin toxicity, as genetic compromise of its function enhances the
growth inhibitory effects of doxorubicin
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homeostasis, actin cortical patch localization, and telo-
mere tethering at the nuclear periphery (Fig. 12 and
Table 3). We expanded the analysis to genes that were
not GO-enriched, because genes may have evolutionar-
ily conserved influences on phenotype independent of
prior functional annotation and also independent of en-
richment all together. Thus, we examined homologs
systematically (regardless of GO enrichment) for yeast
phenomic–PharmacoDB correlation and if evident spe-
cifically in either the glycolytic or respiratory context
(Fig. 11, Tables 3 and 4, and Additional file 11). As
discussed in the “Results” section, many genes not iden-
tified solely by GO-enrichment were nevertheless repre-
sentative of enriched buffering processes from the
phenomic model. The supplemental data files provided
enable mining the pharmacogenomics data with the
yeast model, filtering on combinations of desired cri-
teria, including metabolic status, tissue type, and
pharmacogenomics data set (Additional file 11).
Regarding the Warburg influence on chemotherapy

response highlighted by the yeast phenomic model,
work with cancer cell lines, mice, and acute myeloid
leukemia blast cells from patients have suggested his-
tone eviction, increased mutation rates at active pro-
moter sites are important mechanisms of doxorubicin
toxicity [18, 19, 232], including accumulation of dam-
age from chromatin trapping by the FACT complex
[20]. Further support of the importance of chromatin
regulation was suggested by transcriptional control
and assembly of histones, as well as histone modifica-
tions, as also suggested by differential gene expression
from the pharmacogenomics data. The yeast model
suggests that most of these effects are particularly im-
portant in a respiratory context; thus, from a preci-
sion medicine perspective, tumors that are promoted
by genetic compromise in chromatin regulation [233,
234] would be potentially more susceptible to treat-
ment, but only if they have not undergone the
Warburg transition to glycolysis. Analogously, patients
with germline variation resulting in functional com-
promise of chromatin regulation may have normal tis-
sue (e.g., cardiac muscle) that is susceptible to
doxorubicin and thus may suffer greater toxic side ef-
fects of cancer treatment.
The genetic and phenotypic resolution of the yeast

model can help resolve differential buffering by re-
lated complexes or pathways. In the example of his-
tone deacetylase complexes, the class I (RPD3L and
3S complexes) and class II (HDA1 complex) HDAC
genes interact differentially with doxorubicin. The
Sin3-type class I HDAC complex exerts stronger dele-
tion enhancement that is respiration specific, while
the Class II (HDA1) complex shows weaker deletion
enhancement that is relatively independent of

Warburg status (Fig. 6a). These observations suggest
that stratifying cancers based on their Warburg meta-
bolic status could be informative for clarifying the
clinical efficacy of different HDAC inhibitors in com-
bination with doxorubicin. Consistent with the yeast
model, pan-HDAC inhibitors have been shown to
enhance the anti-cancer efficacy of doxorubicin, as
well as its cardiotoxicity [235, 236]. Interestingly,
shRNA-mediated inhibition of HDAC6 enhanced
doxorubicin cytotoxicity in transformed cells [237],
but protected against doxorubicin induced cardiotoxi-
city [238]—findings which could relate to the reduced
toxicity associated with loss of class II vs. class I his-
tone deacetylase function. Given that cancers can be
driven by epigenetic plasticity [233, 234], such as
could occur by loss of histone deacetylase function,
information about the Warburg metabolic status
could help clarify the likely impact of mutations in
Sin3-type (class I) vs. HDA1-like (class II) histone
deacetylase complexes. While speculative, this ex-
ample illustrates the possible utility of yeast phenomic
models to generate unbiased, systems-level experi-
mental insights and may be of interest given the
availability of HDAC6-specific inhibitors [239].
The examples of integrating yeast phenomic data

with cancer cell line pharmacogenomics data to
predict therapeutic efficacy are not limited to doxo-
rubicin and/or the Warburg phenomenon. Analogous
phenomic models could be generated for other cyto-
toxic agents and/or metabolic states, so long as the
corresponding targets and buffering networks are con-
served. Consistent with prior studies in yeast examin-
ing the question [169], we found the global
correlation of human UES and OES with yeast deletion
suppressors and enhancers to be low, further indicating
the value of phenomic models for interpreting associations
of gene expression with actual traits that are directly sub-
ject to natural selection. We anticipate that future integra-
tive studies and ultimately clinical trials will further clarify
how yeast phenomic studies can contribute to personaliz-
ing therapeutic efficacy for patients.
Although we focused the yeast model on predicting

causality among differentially expressed genes that were
associated with doxorubicin sensitivity in pharmacoge-
nomic experiments, it can also be directly informative
even if not correlated with gene expression. For example,
genes required for DNA recombinational repair can be
functionally regulated relatively independently of tran-
scription [169]. Accordingly, these were detected more
strongly from the yeast phenomics than the pharmaco-
genomics data.
In summary, we envision yeast phenomic drug-gene

interaction models as a complement to existing can-
cer pharmacogenomics, providing an experimental
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platform to quantitatively derive drug-gene interaction
network knowledge that can be integrated with DNA,
RNA, protein, epigenetic, metabolite profiling, and/or
cell proliferation data collected from tumors. Examples
of experimental validation of the yeast model in cancer
cell lines, as described through the manuscript, are
summarized in Table 5. As a future step, predictions
regarding treatment response of cancer to specific
cytotoxic agents could be tested prospectively with pa-
tient samples, in vitro or in patient-derived xenograft
models. Such a strategy could also be extended to be-
fore and after treatment(s) to understand how cancers
evolve to buffer the drug’s toxicities. Analyses of

patient-derived tumor organoids, for example, could
include predictive modeling and experimental validation
for the development of treatment strategies, both initially
and with recurrence [240–242]. Though we have focused
on a single cytotoxic agent for demonstrating the
principle here, yeast phenomics would also accommodate
modeling of combination chemotherapy, both for anti-
cancer efficacy and host toxicity [243]. The influence of
the Warburg effect or other influences of metabolic or
nutrient status could also be integrated into such person-
alized models of cancer chemotherapy efficacy [244].
Thus, yeast phenomic models can be tailored to examine
increasingly complex interactions: also including

Table 5 Literature supporting the yeast phenomic doxorubicin model

y/hGene Process PharmacoDB Description Ref Doxorubicin relevance/validation

Enhancement/UES

MUS81/MUS81 Topological change MUS81 MUS81 structure-specific
endonuclease subunit

[103, 181, 182] Knockdown (shRNA) increases
cisplatin and epirubicin
(doxorubicin analog)-induced
apoptosis of HCC cells.

SOD1/SOD1/
CCS

Oxidative stress: complexes
III and IV; protein import
into mito matrix

SOD1; CCS Superoxide dismutase [8, 11, 72–74] Doxorubicin causes depletion
of cardiolipin and cytochrome
c in cardiomyocytes, which
reduces workload capacity and
accelerates aging; TIM/TOM
deficiency induces oxidative
stress, oxidative stress enhances
doxorubicin toxicity.

CDC8/DTYMK;
CDC21/TYMS

dTTP biosynthetic process NA Thymidylate kinase; thymidylate
synthetase

[127] shRNA silencing of DTYMK
enhances doxorubicin in
cancer cell lines.

HDA1/HDAC6 Histone deacetylation HDAC6 Histone deacetylase 6 [235, 236] shRNA inhibition of HDAC6
enhances doxorubicin treatment;
HDAC6 inhibition reduces
cardiomyocyte toxicity.

Suppression/OES

VPS53/VPS53 Sphingolipid homeostasis VPS53 GARP complex subunit [204] Transfection with VPS53
transcript induces apoptosis
and sensitizes cervical cancer
cells to doxorubicin.

ELO2/3/
ELOVL6

Fatty acid elongase activity;
ceramide/phytosphingosine

ELOVL6 ELOVL fatty acid elongase
6; doxorubicin induces
ceramide overproduction
contributing to doxorubicin
induced apoptosis

[12, 13, 150–156] Loss of genes involved in
sphingolipid/ceramide
metabolism suppress
doxorubicin cytotoxicity in
our experiment; treatment
with by N,N-dimethyl
phytosphingosine sensitizes
leukemia cells to doxorubicin.

POB3/SSRP1 FACT complex SSRP1 Structure-specific
recognition protein 1

[20] FACT complex binds and
“traps” disassembled chromatin
in response to doxorubicin
induced nucleosome
disassembly, which induces
chromatin damage.

ARP2/ACTR2 Actin cortical patch localization;
APR2/3 complex

ACTR2 ARP2 actin-related
protein 2 homolog

[158–162, 188] ROCK1 deletion enhances
doxorubicin resistance in
fibroblasts by altering the actin
cytoskeleton and protecting
from apoptosis.
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background genetic factors such as homologous recom-
bination deficiency [144]. Yeast phenomics provides the
experimental capabilities and genetic tractability to
model genetic buffering networks relevant to human dis-
ease at high precision and resolution. However, advanced
strategies for applying yeast phenomics to predict genetic
influences on human disease biology remain to be
developed.
A major premise of precision medicine should be to

comprehensively and quantitatively account for the con-
tribution of genetic variance to phenotypes as well as in-
fluential interacting factors such as cell energy
metabolism, age, drugs, or other environmental factors.
This is an overwhelming challenging in humans, as func-
tional genetic variation, as exemplified in cancer, is es-
sentially too abundant to resolve at a systems level,
particularly with respect to higher-order interactions as
undoubtedly occur with combination chemotherapy.
Thus, yeast phenomics, which can define gene inter-
action networks and genetic buffering in a systematic
and global way [28, 245, 246], offers the potential to help
resolve gene interaction networks that contribute to dis-
ease and therapeutic response [24, 247].

Conclusions
A yeast phenomic model for the influence of War-
burg metabolism on doxorubicin cytotoxicity revealed
that glycolysis reduces the cellular reliance on genetic
buffering networks. The model reports gene deletion-
enhancing and deletion-suppression pathways and le-
verages yeast phenomic results to predict differentially
expressed human genes that are causal in their associ-
ation with doxorubicin killing from cancer cell line
pharmacogenomics data. As such, this yeast model
provides systems-level information about gene net-
works that buffer doxorubicin, serving as example of
how Q-HTCP applied to the YKO/KD enables experi-
mental designs to quantify gene interaction globally at
high resolution; in this case, resolving how gene net-
works buffer doxorubicin cytotoxicity differentially
with respect to Warburg metabolic status. Under-
standing cytotoxicity in terms of differential gene
interaction networks has the potential to inform sys-
tems medicine by increasing the precision and ration-
ale for personalizing the choice of cytotoxic agents,
improving anti-tumor efficacy, and thereby reducing
host toxicity. Yeast phenomics is a scalable experi-
mental platform that can, in principle, be expanded
to other cytotoxic chemotherapeutic agents and meta-
bolic states, singly or in combination, thus providing
versatile, tractable models to map drug-gene inter-
action networks and understand their complex influ-
ence on cell proliferation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40170-019-0201-3.

Additional file 1: Figure S1. Doxorubicin dose responses of the YKO/
KD parental strains, BY4741a, BY4742alpha, and BY4743a/alpha diploid.
Figure S2. Correlation between interaction scores based on L vs. other
CPPs (K, r, and AUC), for both HLD and HLEG media. Figure S3. A
summary of the first and second rounds of REMc. First round clusters are
at the left end of each row of heatmap thumbnails; second round
clusters derived from each first round cluster are ordered to the right by
relative strength. Rows are grouped into panels by similarity in their gene
interaction profiles. The columns in each heatmap have the same order
from left to right (see inset panel), with K to the left and L to the right.
Within the K and L groups, HLD is to the left and HLEG to the right.
Within each of the CPP-media groupings, ‘shift’ (-) is left of the
doxorubicin-gene interaction (+). (A) Respiration-specific enhancement.
(B) Warburg-independent enhancement. (C) Glycolysis-specific
enhancement. (D) HLD and HLEG suppression modules. (E) Respiratory
deficiency. Figure S4. Doxorubicin-gene interaction profiles for selected
mitochondrial GO terms. Figure S5. Deletion of mitochondrial genes
tends to influence doxorubicin-gene interaction in a respiratory (HLEG
media) more so than a glycolytic (HLD media) context. Figure S6.
Heatmaps for GO terms comprised of overlapping gene sets. Figure S7.
Pleiotropic phenotypic influences from genetic perturbation of
ribonucleoprotein complex subunit organization. Figure S8. HLD-specific
deletion enhancement of doxorubicin toxicity by evolutionarily conserved
genes. See also Additional file 10: Table S13. Figure S9. GO term-specific
heatmaps for mRNA 3’ end processing and mRNA cleavage gene
interaction profiles. Figure S10. Suppression of doxorubicin cytotoxicity
by perturbation of sphingolipid and ceramide metabolism. Figure S11.
Deletion suppressing doxorubicin-gene interaction for nuclear pore and
actin cortical patch functions is relatively Warburg-independent.

Additional file 2. Doxorubicin-gene interaction data; Tables S1-S8. Ta-
bles S1-S4 are the genome-wide experiment: Table S1. YKO/KD strains
in HLEG. Table S2. Reference cultures in HLEG. Table S3. YKO/KD strains
in HLD. Table S4. Reference cultures in HLD. Tables S5-S8 are the valid-
ation study: Table S5. YKO/KD strains in HLEG. Table S6.
Reference cultures in HLEG. Table S7. YKO/KD strains in HLD. Table S8.
Reference cultures in HLD.

Additional file 3. Interaction plots for HLEG. (A, B) Genome-wide and
(C, D) validation analyses for (A, C) YKO/KD and (B, D) reference strains in
HLEG. See also methods and Additional file 2.

Additional file 4. Interaction plots for HLD. (A, B) Genome-wide and (C,
D) validation analyses. (A, C) YKO/KD and (B, D) reference strains in HLD
media. See also methods and Additional file 2.

Additional file 5. REMc results with doxorubicin-gene interaction profile
heatmaps and Gene Ontology enrichment (GO Term Finder; GTF) results.
File A contains REMc results and associated gene interaction and shift
data. File B is the heatmap representation of each REMc cluster after in-
corporating shift values and hierarchical clustering. File C contains the
GTF results obtained for REMc clusters for the three ontologies – process,
function, and component.

Additional file 6. Gene Ontology Term Averaging (GTA) results and
interactive plots. File A contains all GTA values, cross-referenced with
REMc-enriched terms. File B displays GTA values associated with above-
threshold GTA scores (see note below) plotted for HLD vs. HLEG. GTA
values for REMc-enriched terms are also included (regardless of whether
|GTA score| >2). File C displays a subset of File B, containing only GO
Terms with above-threshold GTA scores and that were enriched by
REMc/GTF. File D reports GTA value using the K parameter. Files B-D
should be opened in an Internet web browser so that embedded
information from File A can be viewed by scrolling over points on the
graphs. Subsets in each of the plots can be toggled off and on by
clicking on the respective legend label. In the embedded information, X1
represents HLEG and X2 represents HLD information. Note: The GTA score
threshold (for L) indicates that GTA-gtaSD > 2 for enhancers or
GTA+gtaSD < -2 for suppressors, in at least one media.
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Additional file 7. Systematic comparisons involving genome-wide
studies of doxorubicin-gene interaction. Table S9. Genes with deletion-
enhancing doxorubicin-gene interaction from Xia et al. 2007 and West-
moreland et al. 2009. Table S10. Summary of experimental details
associated with Table S9. Table S11. Test of enrichment for doxorubicin-
gene interaction among genes encoding proteins predicted as substrates
of the NatC complex. Table S12. Test of enrichment for doxorubicin-
gene interaction among genes predicted to be regulated by conserved
uORFs (Cvijovic et al. 2007).

Additional file 8. Quantitative summaries of REMc clusters. File A
depicts REMc results, in terms of cluster distributions of L and K
interaction (‘shift’ is not used for REMc and thus is not displayed), as a
way to visualize cluster differences quantitatively. File B is organized by
first round clusters and plots the change in p-value for significant terms
with respect to round of clustering. Clusters derived from one another
and sharing enrichment of the same GO term are connected by a line.
Only GO terms with a background size of 500 or smaller are included.
Scroll over a symbol to see embedded detail about each GO term. The
square root of the p-value is used on the y-axis to evenly distribute data.

Additional file 9. GO term-specific heatmaps for REMc/GTF-enriched
clusters. GO term-specific heatmaps for significant GO process terms were
generated as described in methods and Figs. 3 and 4. Any related child
terms are presented in subsequent pages of the parent file name. GO
terms with more than 100 children, with 2 or fewer genes annotated to
the term, or a file size over 300KB are not shown. All heatmaps are
generated with the same layout (see Figs. 3 and 4).

Additional file 10: Table S13. HLD-specific gene deletion enhance-
ment, not associated with ‘shift’ / growth deficiency. Data were selected
for yeast-human homologs if the respective YKO/KD strains
generated growth curves in both HLD and HLEG media (in the absence
doxorubicin), and either of the following two sets of criteria were met: (1)
HLD L interaction > 2 and HLEG L interaction < 2; these data were further
filtered for HLD L Interaction - HLD L Shift > 4, and are presented in
Additional file 1: Figure S8A.; or (2) HLD L Interaction – HLEG L interaction
> 4 and HLEG K interaction > - 10; these data were further filtered for
HLD L Interaction - HLD L Shift > 4, and are presented in Additional file 1:
Figure S8B. Data included in Additional file 1: Figure S8 are indicated in
the last column.

Additional file 11. Integration of yeast phenomic and cancer cell line
pharmacogenomic data to predict human genes that modify doxorubicin
toxicity in cancer cells. (A) Tables of UES and OES human genes and
whether their yeast homologs were found to be deletion enhancing or
deletion suppressing, respectively. (B-C) Overlap between the gCSI and
GDSC1000 databases with regard to UES and OES human genes (B)
across all tissues or (C) for individual tissues. Note: the intersection of UES
with OES between gCSI and GDSC was used as a negative control for
assessing UES and OES overlap. (D-E) Yeast phenomic doxorubicin-gene
interaction profiles for homologs of human UES or OES genes,
sub-classified according to interaction type (deletion enhancing or
suppressing) and Warburg-dependence of the interaction, for the (D)
gCSI or (E) GDSC1000 databases. Similar to Fig. 11, yeast-human
homology relationships are shown to the left of heatmaps (blue - one to
one; green - one to many; red - many to many). (F-I) Interactive plots for
yeast-human homologs, comparing the p-value of human genes to L
interaction scores for yeast counterparts in (F, G) HLD or (H, I) HLEG from
(F, H) gCSI or (G, I) GDSC1000. For the standardized coefficient (‘estimate’;
color gradient), a negative value (purple) indicates UES, while a positive
value (orange) indicates OES. Thus, the model would predict causality for
a human gene if its yeast homolog has a positive L interaction (deletion
enhancing) and is colored purple (UES), or a negative L interaction
(deletion suppressing) and colored orange (OES). Genes are only plotted
if the human homolog was significant (p-value < 0.05).

Additional file 12. Comparisons between yeast studies of doxorubicin
in the context of integrating cancer pharmacogenomics data.
Overlapping and unique sets of genes reported from the different studies
of doxorubicin, using the YKO/KD libraries, are assessed with regard to
correlation with cancer pharmacogenomics data.
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Glossary of terms
CPPs

Cell proliferation parameters: parameters of the logistic growth equation
used to fit cell proliferation data obtained by Q-HTCP. The CPPs used to
assess gene interaction in this study were K (carrying capacity) and L (time
required to reach half of carrying capacity, K/2) [27, 28, 31, 33]

DAmP
Decreased abundance of mRNA production: refers to the method of
making the yeast knockdown alleles, where the 3’ UTR of essential genes
is disrupted, reducing mRNA stability and therefore gene dosage [248]

DE
Deletion enhancer: gene loss of function (knockout or knockdown) that
results in enhancement/increase of drug sensitivity [28]

dNTP
Deoxyribonucleotide triphosphate

DS
Deletion suppressor: gene loss of function (knockout or knockdown)
that results in suppression/reduction of drug sensitivity [28]

dsDNA
Double-stranded DNA

EMC
Endoplasmic reticulum membrane complex: an evolutionarily conserved
protein complex involved in protein biogenesis via the ER [28, 85]

ER
Endoplasmic reticulum

ERMES
ER-mitochondria encounter structure: mitochondrial outer membrane
complex regulated by the evolutionarily conserved Rho GTPase, Gem1
[249]

GARP complex
Golgi-associated retrograde protein complex [250]

gCSI
The Genentech Cell Line Screening Initiative: one of the two
pharmacogenomics datasets curated by PharmacoDB that reported
both cancer cell line gene expression and doxorubicin sensitivity data.
Details regarding use of CellTiter Glo for pharmacological studies and
Illumina RNA-seq for gene expression studies are provided at https://
pharmacodb.pmgenomics.ca/datasets/4
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GDSC1000
Genomics of Drug Sensitivity in Cancer: one of the two
pharmacogenomics datasets curated by PharmacoDB that reported
both cancer cell line gene expression and doxorubicin sensitivity data.
Details regarding use of Syto60 for pharmacological studies and
Affymetrix HG-U133A for gene expression studies are provided at
(https://pharmacodb.pmgenomics.ca/datasets/5)

GO
Gene ontology

GTF
Gene ontology term finder: an algorithm to assess GO term enrichment
among a list of genes; applied to REMc (clustering) results [35]

GTA
Gene ontology term averaging: an assessment of GO term function obtained
by averaging the gene interaction values for all genes of a GO term

GTA value
Gene ontology term average value: see GTA

gtaSD
standard deviation of GTA value: see GTA

GTA score
(GTA value - gtaSD): see GTA

HDAC
Histone deacetylase complex

HLD
Human-like media with dextrose [27]: the yeast media used in this
study to induce glycolytic metabolism

HLEG
Human-like media with ethanol and glycerol [27]: the yeast media used
to induce respiratory metabolism

INT
Interaction score

m7G
7-methylguanosine

MCM
Mini-chromosome maintenance

OES
Overexpressed in doxorubicin sensitive cells: refers to genes having an
association of above average expression with doxorubicin sensitivity in
pharmacogenomics data [38]

PharmacoDB
The resource used to analyze the gCSI and GDSC pharmacogenomics
datasets [38]

Q-HTCP
Quantitative high throughput cell array phenotyping: a method of
robotic imaging and image analysis that analyzes cell proliferation of
yeast spot cultures arrayed onto agar media [31, 33]

Ref
Reference: the “reference” culture from which the YKO/KD strain library
was derived

REMc
Recursive expectation maximization clustering: a probabilistic clustering
algorithm that determines a discrete number of clusters from a data
matrix [34]

ROS
Reactive oxygen species

RPA
Replication Protein A

SD
Standard deviation

SGD
Saccharomyces cerevisiae genome database

snoRNAs
Small nucleolar RNA

snRNA
Small nuclear RNA

t6A
Threonyl carbamoyl adenosine

UES
Underexpressed in doxorubicin sensitive cells: refers to genes having an
association of below average expression with doxorubicin sensitivity in
pharmacogenomics data [38]

uORF
Upstream open reading frames

YKO
Yeast knockout: complete gene deletion, constructed in a haploid cell
for non-essential genes

YKD
Yeast knockdown: DAmP allele, constructed in a haploid cell for
essential genes

YKO/KD
Yeast knockout or knockdown
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