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Abstract

consumption.

extracellular metabolites.

Background: Glucose and glutamine are the two dominant metabolic substrates in cancer cells. In "°C tracer
experiments, however, it is necessary to account for all significant input substrates, as some natural (unlabelled)
substrate in the medium, often derived from serum, can be metabolised by cells despite not showing signs of net

Results: Using [U-">C¢]-glucose tracers and measuring extracellular metabolite enrichments by GC-MS, we found
that pancreatic cells HPDE and PANC-1 secrete lactate, pyruvate, TCA cycle metabolites and non-essential amino
acids synthesised from glucose. Focusing our investigations on pyruvate exchange in HEK293 cells, we observed
that the four metabolites pools, intracellular and extracellular lactate and pyruvate, had similar ">C enrichment
trajectories. This indicated that these metabolites can mix rapidly. Using a hybrid "*C-MFA, we followed to show
that the lactate exchange flux had increased when extracellular lactate concentration was increased by 10-fold.
By allowing rapid exchange fluxes around the pyruvate node, '*C-MFA revealed that PANC-1 cells cultured in
[U-"3Cgl-glucose doubled the conversion of unlabelled substrates to pyruvate when treated with TNF-a.

Conclusions: The current work established the possibility that a cell’s range of significant input substrates may be
broader than anticipated. Metabolite exchange can affect intracellular enrichments. In particular, we showed that
pyruvate was more strongly connected to lactate than to upstream glycolytic intermediates and that a fast
lactate exchange may alter the outcome of flux analyses. Nevertheless, the leaky cell model may be an
opportunity in disguise—the ability to continuously monitor metabolism using only the enrichments of
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Background

The metabolism of cancer cells is heterogeneous and
highly adaptive [1, 2]. Indeed, many recently discovered
metabolic features of cancer cells have been unexpected,
notably the alternative glycolysis by phosphoglycerate
mutase 1 and pyruvate kinase M2 isoform [3] and the
simultaneous oxidative and reductive conversion of 2-
oxoglutarate [4]. Because of the extensive scope of meta-
bolic rewiring in cancer cells, there is intense interest in
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investigating the potential of specific metabolic enzyme
and pathways as therapeutic targets [5-7].
Metabolomics and metabolic tracers have been an in-
valuable tool in understanding complex metabolic alter-
ations that occur in response to physiological stressors
and disease [8-10]. Targeted metabolite profiling, via
very elegantly designed tracer experiments and/or flux
modelling, have provided a read-out of how metabolic
pathways are utilised/altered in cancer [4, 11-14]. Com-
monly, tracer experiments have been conducted on the
premise that glucose and glutamine are the two domin-
ant substrates [15]. The aim is to resolve and understand
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the re-routing of these nutrients caused by certain meta-
bolic perturbations, to fulfil energy, biosynthesis and
redox demands [16]. Pathway activity interpretations are
made under the context of a metabolic model, often ren-
dered simple but still physiologically representative.

Metabolic flux analysis is a very useful modelling tech-
nique to quantify metabolism [17, 18], but its translation
from microbial to mammalian system has been hindered
by mammalian cells’ fastidious nutritional demands, e.g.,
serum. In a serum- and protein-free bioreactor culture,
about 65 and 10 % of the carbon uptake flux of CHO-
K1 (Chinese hamster ovary) cells were attributed to
glucose and glutamine, respectively, with amino acids
constituting the balance [19]. The same experiment,
using [U—13C6]—glucose, also showed the reversible ex-
change of labelled pyruvate, lactate and amino acids (ala-
nine, serine, glycine, aspartate, glutamate and glutamine)
between intracellular and extracellular pools. The rapid
exchange of amino acids was also described in protein-
scavenging PDAC (human pancreatic ductal adenocar-
cinoma) cells [20]. CORE (cellular consumption and
release) profile of metabolites in the NCI-60 panel
showed two thirds of 111 metabolites were consistently
released into the medium, and these included glycolytic
and TCA (tricarboxylic acid) cycle intermediates [21].
While not all of these exchanges have significant meta-
bolic flux contribution relative to glucose and glutamine,
the significant ones will affect tracer-based flux model-
ling. Therefore, it is necessary to identify and specify
these fluxes upfront.

Our investigation was spurred by frequent unexpected
observations that pyruvate and lactate were barely la-
belled by [U—13C5]-glutamine in carbon tracer experi-
ments. Often, it is assumed that malic enzymes are an
integral part of glutaminolysis, converting malate to
pyruvate [13, 22, 23]. However, when applying [U-"3C;]-
glutamine to ovarian cancer cells [12], myoblasts [24],
PDAC cells [13], and even CHO cells [25], pyruvate/lac-
tate pools were by and large unlabelled, despite malate
and TCA metabolites being predominantly labelled by
glutamine. It is possible that many pathways that con-
verge at pyruvate, in addition to glycolysis, have fluxes
greater than the malic enzymes. With [U-13C6]-glucose,
lactate not only showed a slower enrichment dynamic
compared to phosphoenolpyruvate but the enriched
amount was halved [25, 26]. In a [U-"3C;]-glutamine
experiment, M3 (fully labelled) lactate continued to in-
crease linearly over 300 min despite M4 malate peaking
at 100 min, although the fraction of M3 lactate was less
than 1 % [13]. Both cases demonstrated that the connec-
tion of pyruvate with glycolysis and glutaminolysis is
weaker than anticipated. Why glutaminolysis, a domin-
ant contributor to TCA cycle flux, had such a small con-
tribution to pyruvate formation, is unclear.
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It is crucial to identify all significant pathways that con-
verge at a metabolite node when using tracer data to infer
metabolic activity. Particularly for cancer cell models,
dominant metabolic features like glycolysis and glutami-
nolysis are included by default, but unrelated pathways are
often ignored to simplify analysis. In the current study,
enriched TCA cycle metabolites were found to be
present extracellularly in PDAC and HPDE (human
pancreatic duct epithelial) cells fed with [U-13C¢] -glu-
cose. This may explain the gradual loss of labelled glu-
tamine observed in previous work and drew attention
to the possibility that intracellular metabolites can ex-
change with extracellular pools.

Thus, we hypothesised that high exchange fluxes—a
“leaky” cell—caused the dilution of '>C labelling at the
pyruvate node. We showed that high extracellular lactate
can dampen the enrichment rate of intracellular pyru-
vate due to rapid inter-compartment exchanges. In other
words, pyruvate enrichment is not solely dependent on
glycolysis and glutaminolysis, but on surrounding ex-
change fluxes as well. On top, we showed that a “leaky”
cell model, despite making flux analysis more compli-
cated, can be advantageous as a convenient approach to
continuously monitor intracellular metabolic activity
using extracellular enrichments.

Methods

Reagents and cells

All chemical standards (glucose, sodium lactate, sodium
pyruvate) and reagents were purchased from Sigma-
Aldrich (Castle Hill, Australia), unless indicated other-
wise. HPLC-grade methanol and chloroform were used.
[U—13C6]—glucose was purchased from Sigma-Aldrich
(Castle Hill, Australia). Succinic acid-d6 (99 atom % D)
from MSD Isotopes (Montreal, Canada) was kindly
provided by BMSF (UNSW Australia). Recombinant
human TNF-a was purchased from R&D systems
(Minneapolis, MN, USA). Dialysed foetal calf serum
(Life Technologies) was kindly provided by Holst Lab
(USYD Australia).

HEK 293 and the PDAC cell line PANC-1 cells were
cultured in Dulbecco’s modified Eagle’s medium contain-
ing 1 and 4.5 g/L glucose (Sigma-Aldrich), respectively,
supplemented with 10 % foetal bovine serum (FBS,
Gibco) and penicillin-streptomycin (Gibco). HPDE cells
(a kind gift from Dr. Darren Saunders, UNSW Australia)
were cultured in keratinocyte serum-free media (Gibco)
supplemented with epidermal growth factor (5 ng/ml)
bovine pituitary extract (50 ug/ml) and penicillin-
streptomycin (Gibco).

HEK cell culture in EM and FM media
HEK 293 cells were cultured in 13 x 6-cm cell culture
dishes in a humidified incubator set at 37 °C and 5 %
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CO,. Cells were seeded such that each dish contained 1
million cells after 40 h of incubation. One of the dishes
was used for cell count (total 1.12 million cells). At the
start experiment, cell culture media from six dishes were
combined. [U—13C6]—glucose was then added to reach
1 g/L in concentration, and 2 ml of the labelled existing
medium (EM) was transferred back to the dishes. For
the remaining six dishes, cell culture medium was re-
placed with 2 ml of fresh medium (FM) containing an
additional 1 g/L [U—13C6]—glucose. A dish each from the
EM and FM groups was harvested every half hour for
cells and cell culture medium.

PANC-1 cells treated with TNF-a

PANC-1 cells were seeded in 6-well plates at a density of
1.5 x 10° per well and treated with either 40 ng/ml TNE-
a or phosphate-buffered saline for 72 h. Cell culture
medium was then changed for 2 ml (per well) of DMEM
containing 4.5 g/L [U-'?Cg]-glucose. From one well of
the control and TNF-a, 50 ul of cell culture medium
was sampled every hour for 5 h. Cells from three other
parallel wells were harvested for protein abundance at
midpoint (2.5 h) and lysed with RIPA buffer pH 7.5
containing 20 mM Tris-HCI, 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1 % NP-40 1 % sodium deoxy-
cholate, 2.5 mM sodium pyrophosphate and 1 mM
b-glycerophosphate for protein content determin-
ation. Protein concentration of the lysates was deter-
mined using the Pierce BCA assay kit (Thermofisher
Scientific, USA).

HPDE and PANC-1 cell culture in glucose-labelled medium
HPDE and PANC-1 cells were seeded in 6-well plates at
a density of 3 x 10° per well and cultured at 37 °C with
5 % CO, for 48 h. Media from each well was then re-
placed with 2 ml of glucose-free DMEM, with 10 % FBS,
containing 1 g/L of either normal glucose or [U-"*Cq]-
glucose; 1.5 ml of cell culture medium was harvested
after a 24-h incubation.

Metabolite sampling and extraction

For extracellular samples, harvested cell culture medium
was centrifuged at 300g (4 °C) for 5 min, with the super-
natant stored in -30 °C freezer until analysis.

For intracellular samples, the remaining medium was
removed before washing each dish once with 5 ml of
ice-cold 0.9 % w/v NaCl (saline) solution. Metabolites
were then extracted using 2.5 ml of 50 % v/v methanol:-
water mixture at —30 °C. Cells were scraped in this mix-
ture before being transferred into a 15-ml falcon tube
kept in ice. The plate was rinsed once with 2.5 ml of ice-
cold Milli-Q water, and the solution was combined with
the first extract; 5 ml of chloroform at -30 °C was added
to the extraction mix, followed by 10 s of vortexing and
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5 min of centrifuging at maximum speed. The aqueous
phase was transferred into a glass tube and evaporated
to dryness without heat by SpeedVac (Savant). Dried
samples were promptly derivatised.

MAB derivatization

We combined three different derivatisation strategies
into a one-pot reaction synthesis: methoximation, aldoni-
trile peracetate derivatization [27] and alkylation using
chloroformate [28, 29] (see Additional file 1: S4). Methox-
yamine hydrochloride, which often is used in conjunction
with silylation, reacts with aldehyde and ketone functional
groups to prevent keto-enol tautomerization. Subsequent
addition of acetic anhydride acetylates the alcohol group
of lactate and glucose. Finally, the addition of butanol and
chloroformate leads to butylation of the carboxylic group
of lactate and pyruvate. This method was used to deriva-
tise all longitudinal samples extracellular lactate, pyruvate
and glucose because the GC programme is significantly
shorter (<11 min) (Fig. 1a).

The following describes the procedure used for
methoximation-acetylation-butylation (MAB) derivatiza-
tion; 10 pl of the thawed supernatant was combined with
10 pl of succinic acid-d6 (10 mM) in a glass vial and was
evaporated to dryness by SpeedVac. Dried samples were
resuspended in 15 pl of pyridine containing 20 mg/ml
methoxyamine HCI and then incubated at 80 °C for 1 h;
15 pl of acetic anhydride was added, followed by another
hour of incubation at 80 °C. Once cooled to room
temperature, 50 pl of 1-butanol and 10 pl of ethyl chlor-
oformate were added in succession, with each step
followed by brief vortexing. Samples were kept at room
temperature for 5 min before being transferred into 600-
pul microcentrifuge tubes; 80 pul of chloroform was added,
followed by 10-15 mg of sodium hydrogen carbonate
solids and 75 pl of saturated sodium hydrogen carbonate
solution. The organic and aqueous phases were mixed
by pipetting. After the bubbling had ceased, a further
150 pl of saturated sodium hydrogen carbonate solution
was added. After brief vortexing, samples were centri-
fuged at 500g for 5 min. About 70 ul of the chloroform
(bottom) phase was transferred into GCMS vials using
gel-loading pipet tips.

Two sets of glucose, lactate and pyruvate external
standards were prepared in twofold serial dilutions
(Fig. 1b, c). The first set had a starting concentration of
2 mM for all metabolites (equimolar series); the second
set had a starting concentration of 20, 10, and 2 mM for
glucose, lactate and pyruvate, respectively (cell culture
ranges); 10 pl from each standard mixture was combined
with 10 pl of succinic acid-d6 (10 mM) in a glass vial,
and the solutions were dried and derivatised as describe
previously. Analyte responses were linear for pyruvate and
lactate (r2>0.985). Glucose signals, however, showed a
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Fig. 1 GC-MS quantification of metabolites derivatised by methoximation-acetylation-butylation. The volume of derivatised standard mixture was
10 pl, the injection volume was 1 pl splitless, and ions were monitored with a dwell time of 50 ms. Peaks areas were normalised to internal standard
succinic acid-d6. a GC chromatogram generated in scan mode for equimolar (2 mM) standard of pyruvate, lactate and glucose. Pyurvate and lactate
peaks are shown as ions 142 and 115, respectively (left zoom-in panel). The methoxime and nitrile derivatives of glucose pentaacetate peaks are shown
as ions 331 and 314, respectively (right zoom-in panel). b Equimolar calibration curves for pyruvate, lactate and glucose. Duplicate injection of standards
between 0.125 and 2 mM. ¢ Similar calibration curves with concentrations set at expect medium ranges: 0.25-2.0 mM for pyruvate, 1.25-10 mM for
lactate, and 2.5-20 mM for glucose

weaker linear correlation to concentrations, with the
nitrile derivative (glucose 314) showing a more consistent
response (r2>0.95) than the methoxime derivative
(glucose 331) (r2 <0.84). The gluconitrile derivative was
used for flux calculations.

Silylation of metabolites

For tBDMS derivatization, 40 pl of pyridine contain-
ing 20 mg/ml methoxyamine HCl was added to
dried intracellular metabolites, followed by 80 °C in-
cubation for 1 h; 30 ul of MTBSTFA +1 % t-BDMCS
was then added, followed by another hour incubation
at 80 °C. Derivatised samples were then transferred
into GCMS vials.

For TMS derivatization, 40 pl of pyridine containing
20 mg/ml methoxyamine HCl was added to dried
standards and cell culture media prepared in GCMS
vials, followed by 40 °C incubation for 1.5 h; 30 ul of
MSTFA was then added, followed by 0.5-h incubation
at 40 °C.

GCMS

Derivatised metabolites were analysed by GC-MS
using a HP-5ms capillary column (0.25 mm id. x
30 m x 0.25 pm; Agilent J&W) installed in an Agilent
HP 6890-5973 gas chromatography/mass selective de-
tector. The injection volume was 1 pL in splitless
mode with an inlet temperature of 250 °C. Helium
flow was controlled at 1.1 ml/min. The MS was oper-
ated in electron ionisation mode at 70 eV. The tem-
peratures of the source, quadrupole and the transfer
line were set at 150, 230 and 250 °C, respectively. For
tBDMS metabolites, the GC temperature programme
was 70 °C for 2 min, ramp at 4 °C/min to 200 °C
and at 15 °C/min to 290 °C, then hold for 6 min. For
TMS metabolites, the GC temperature programme
was 70 °C for 2 min and ramp at 4 °C/min to 203 °C, then
bake-out for 10 min at 299 °C. For MAB metabolites, the
GC temperature programme was 100 °C for 2 min, ramp
at 15 °C/min to 150 °C and at 40 °C/min to 325 and hold
for 1.3 min.
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Tracer modelling and computation

MATLAB R2012a (MathWorks, Natick, MA) was used
for the following computation tasks: (1) GCMS peak
integration, (2) correction for mass interference from
non-carbon backbone isotopes [30], (3) enumeration of
elementary modes, and (4) flux estimation by constraint-
based least-square fitting of experimental data (Fig. 2).
Tracer model was generated from the reaction network
and atom transitions using OpenFLUX (see Additional
file 1: S8) [31]. This research includes computations
using the Linux computational cluster Katana supported
by the Faculty of Science, UNSW Australia.

The simulation of isotopic non-stationary extracellular
metabolite data was achieved using the forward Euler
method (Fig. 2). It was assumed that cells are at meta-
bolic steady state and intracellular metabolites are at iso-
topic steady state. The isotopic assumption was made on
the basis that the turnover rates of intracellular metabo-
lites are significantly faster compared to extracellular
pyruvate and lactate. This assumption is reasonable
because intracellular metabolite concentration range
from 0.1 to 20 fmol/cell [32], which is three orders of
magnitude smaller than the concentration range of
extracellular pyruvate and lactate of 2 to 20 pmol/cell
(2 ml culture, 1 million cells). Additionally, it has been
observed that glycolytic metabolites can reach isotopic
steady state within 1.5 h in CHO cells [25]. Hence, the
model is a hybrid of isotopic non-stationary and isotopic
stationary for extracellular and intracellular metabolites,
respectively. During each time step, the steady-state
intracellular enrichments are calculated based on
extracellular enrichments; at the end of each time
step, the extracellular enrichments (of pyruvate and
lactate) are updated.
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Flux analysis was performed by least-square param-
eter estimation [33]. The same metabolic model was
used in the flux analysis of both HEK and PANC-1
data (Fig. 3). An incentive of using forward Euler
method is that the optimization problem is computa-
tionally less demanding to solve. Fixed time steps
were arbitrarily set to 1 and 2 min for the HEK and
PANC-1 data, which were sampled 30 and 60 min
apart, respectively. The objective function minimised
consists of the weighted differences of fraction enrich-
ments and total abundances of metabolites between
the measured and simulated values. The metabolites
are lactate, pyruvate and glucose. For metabolite
abundances, the error variances were calculated from
their respective calibration curves. For fractional enrich-
ments, a uniform error of 0.01 was assumed. This error
was derived from the maximum discrepancy observed be-
tween the measured and the theoretical enrichments of
natural lactate, pyruvate and glucose. Glucose showed the
greatest source of error. To account for the inability to
accurately specify the composition of glucose, we con-
sidered a more conservative approach of applying a
uniform weighting error of 0.01 to calculate the sum
of squared residuals, rather than using their actual
measurement errors.

Sensitivity analysis was performed on the PANC-1 data
by a Monte Carlo approach. The procedure resembles
the experiments but performed in silico. Using the mea-
sured values and errors, 50 iterations of the experiment
were performed by first “corrupting” the measured
values with normally distributed errors and then running
the optimization to estimate flux parameters. Flux
standard errors were then calculated from the 50 sets
of fluxes.

isotopic

isotopic
@ non-stationary

stationary
Forward Euler

intracellular
metabolites

extracellular
metabolites

reactions
and atom
transitions new
solutions
weighted
Ieast-gsquare - YO p-best
L SSR solution
optimization

measured and simulated values

@ initial substrate
enrichments

abundance and
enrichment

extracellular
metabolite data

Fig. 2 A hybrid ">C-MFA approach. Intracellular metabolites were assumed to turnover rapidly and thus achieve steady state enrichments,
whereas large extracellular metabolite pools (lactate and pyruvate) accumulate over time and have transient enrichments. The forward
(explicit) Euler method was used to perform the numerical integration using 1- and 2-min time steps to fit the HEK293 and PANC-1 data,
respectively. Weighted least-square optimization was used to generate new flux and initial concentration estimates based on the difference between

Steps in flux estimation
1. Parse metabolic model into isotopomer model.

2. Optimiser generate new flux vector solution.
3. Optimiser generate new initial concentrations solution.
4. Specify initial abundance of substrate isotopomers.

5. Calculate incrementally with fixed time step:
(i) enrichment fraction of intracellular metabolites
(il) abundance of extracellular isotopomers.

6. Calculate sum of squared residuals (SSR).

7. Save best solution with minimum SSR.
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Fig. 3 Enrichment of extracellular metabolites of HPDE and PANC-1 cells on DMEM labelled with [U-"*C¢l-glucose. Bar graphs show fractional
labelling of metabolites measured in triplicates. Alanine enrichment was used as proxy for mitochondrial pyruvate. Acetyl-CoA enrichment was
calculated from malate and citrate enrichment. Glucose carbon atoms appear to overflow into lactate, with a small portion entering TCA cycle. Heat
map showed a greater dilution of glucose carbons (ie, loss of ">C enrichment) in PANC-1 cells compared to HPDE cells. Asterisk indicates p < 0.05

Statistical analyses

Comparison of % '>C atom enrichments for PANC-1
and HPDE were expressed as means * standard error
of the mean (SEM). Results were analysed by unpaired
Student’s t test between cell types assuming normal
distribution and the same population standard devia-
tions. Differences with p <0.05 were deemed statisti-
cally significant.

Results

Extracellular TCA cycle metabolites enriched

The detection of >C enriched central carbon metabo-
lites in the culture medium of PANC-1 and HPDE cells
fed with [U—13C6]-glucose for 24 h demonstrated exten-
sive secretion of glucose-derived intracellular metabo-
lites (Fig. 3). The % 13C atom enrichments, also known
as fractional labelling [34] showed the fraction of car-
bon atoms of extracellular metabolites synthesised de
novo from glucose. The enriched extracellular metab-
olites were not only conventional mammalian cell
culture by-products like lactate, alanine and glutamate
but also included TCA cycle metabolites and non-
essential amino acids (e.g., proline and serine). Parallel
unlabelled experiments were performed to establish
baseline levels of natural enrichments, which were
about 1-2 % '3C atom enrichment (see Additional file
1: S1). Among the measured metabolites, only glycine
and glutamine were not enriched, indicating that

PANC-1 and HPDE cells did not synthesise (and se-
crete) these metabolites from glucose.

Carbon atoms of the extracellular TCA cycle metabo-
lites were up to 20 % labelled (Fig. 3). The measured
enrichments were consistent with observations in similar
PDAC cell lines that TCA cycle metabolite were predom-
inantly derived from glutamine over glucose [13, 26].
Among the labelled fractions, the M2 fractions were
the most pronounced, suggesting that TCA cycle was
engaged canonically, i.e., oxidising acetyl-CoA. This
was followed closely by the M3 fractions, which can
be explained by anapleurotic flux, since neither the
M3 nor M4 fraction of 2-oxoglutarate was higher
than the M3 fractions of malate, succinate and aspar-
tate (see Additional file 1: S2); 10 to 15 % glutamate
atoms were derived from glucose atoms despite the
backdrop of glutamine-driven anapleurotic flux. This
suggested significant keto acid to amino acid inter-
conversion by transaminases and was shown to occur
in CHO cells as well (~15 % unlabelled glutamate
when cells were cultured in uniformly labelled glu-
tamine) [25].

We qualitatively assessed the metabolites present in
DMEM and the initial cell culture medium (serum +
DMEM). We found the serum to be the major contribu-
tor of unlabelled lactate and some of the amino acids
and TCA cycle metabolites (Table 1). Dialysed serum
did not contain any additional metabolites (results not
shown) and thus should be considered as a substitute
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Table 1 Metabolites detected in 10 pl cell culture medium
measured by GC-MS

Metabolite DMEM  DMEM and serum  HPDE cells  PDAC cells
Lactate - + +++ +++
Pyruvate + + +++ +++
Succinate - + - +
2-oxoglutarate  + + ++ -
Malate - ++ + ++
Citrate - +++ + ++
Glycerol + +++ + ++
Alanine - + ++ ++
Aspartate - + + +
Glutamate - + ++ ++
Glutamine + ++ + +
Glycine + + + ++
Serine + + + +
Proline - + + ++

wou

Concentrations were scored qualitatively with “+”, “++” and “+++" to show
relative quantity. Metabolites with peak area less than 5 % of the largest peak
are marked with “-"

for serum [22]. In addition to being consumed, citrate
and glycerol were enriched with glucose carbon atoms,
evidence that these metabolites were exchanged between
intracellular and extracellular pools.

Extracellular metabolites from PANC-1 and HPDE cells
were differentially enriched

Sampled 24 h after swapping culture medium to the
same DMEM containing [U-13C] glucose, 75+ 1 and
91+1 % of extracellular pyruvate carbon atoms were
found to be derived from glucose in PANC-1 and HPDE
cells, respectively. The same trends were observed in the
13C enrichments for both alanine and lactate (Fig. 3).
This suggested a greater contribution of unlabelled sub-
strates to pyruvate production in PANC-1 cells.

The lower % 3C atom enrichment for alanine (56 +2 %
for PANC-1, 85+1 % for HPDE) compared to pyruvate
suggested that mitochondrial pyruvate was less labelled
than its cytosolic counterpart. This interpretation is drawn
from the notion that mitochondrial alanine transaminase
(ALAT 2) is the dominant enzyme in alanine production
by cancer cells [23, 24] and that pancreatic tissue only
expresses mitochondrial ALAT2 [35]. The dilution of
alanine enrichment seen in PANC-1 compared to HPDE
cells suggested a greater conversion of non-glucose carbon
sources to mitochondria pyruvate in PANC-1 cells, e.g.,
glutaminolysis.

Surprisingly, TCA cycle metabolites were more
enriched in PANC-1 than HPDE cells (Fig. 3). The M2
and M3 fractions were key contributors to the greater %
13C atom enrichment, pointing to a greater oxidation of
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pyruvate via pyruvate dehydrogenase and isocitrate de-
hydrogenase and by via anapleurotic pathway pyruvate
carboxylase in PANC-1 cells. Citrate’s % '>C atom en-
richment was greater in HPDE cells (26 £ 3 vs. 19+ 1 %),
but not significantly (p = 0.08), due to an unusually high
M2 fraction (40-50 vs. 18 %), but the high M2 fraction
did not propagate to 2-oxoglutarate and downstream
metabolites. Put together, PANC-1 cells showed a
greater dilution of pyruvate with unlabelled substrates
compared to HPDE cells, but at the same time, a
greater connectivity/mixing of pyruvate with TCA
cycle intermediates.

Buffering effect of a large extracellular lactate pool

In PANC-1 and HPDE cells, the enrichment of extracel-
lular pyruvate mirrored that of lactate (Fig. 3), implying
a strong connection between both metabolite pools. To
test the hypothesis of a “leaky cell” involving rapid ex-
change fluxes around the pyruvate node, we assessed the
enrichment rate of pyruvate of cells exposed to a low
and a high lactate concentration. Without rapid ex-
changes, the enrichment of extracellular pyruvate should
be proportional to glucose and independent of lactate
enrichment.

We conducted a 3-h time course of HEK293 cell
cultures, measuring enrichment of extracellular pyruvate
and lactate every half hour. Two experiments were set up:
exponentially growing HEK cells were either refreshed to
a new medium (experiment referred as FM) or cultured in
the existing medium (experiment referred as EM), both
with spike-in of 1 g/L [U-">Cg]-glucose at experiment start
(Fig. 4). The initial lactate concentrations of FM and EM
cultures were about 1 and 10 mM, respectively. The
labelled glucose fractions were at 46.9 % (FM) and
71.7 % (EM).

Except for the first time point, extracellular pyruvate
in EM was slightly but consistently less enriched than in
EM, despite EM having a greater fraction of labelled
glucose (Fig. 4). The M3 enrichment fraction of lactate
trailed behind pyruvate with an average gap of 6 %, for
both FM and EM. The fraction of M3 increase was
slower in EM because the culture had 10-fold more lac-
tate than FM. More importantly, this buffering or damp-
ening effect was extended to extracellular pyruvate,
which was no longer strongly dependent on glucose en-
richment. Thus, we inferred that both intracellular and
extracellular pools of lactate and pyruvate pools can ex-
change reversibly and rapidly.

Extracellular enrichments as proxies for intracellular pools
Intracellular metabolites were also obtained for the FM
and EM experiments to assess the extent of exchange
between extracellular and intracellular pools. The M3
fractions of pyruvate and lactate were found to show
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similar trajectories and relative abundances compared to
the intracellular counterparts over the 3-h time course
(Fig. 5a). For FM, the deviations between intracellular
and extracellular fractional enrichments were generally
larger during the first hour. Paired two-tailed ¢ test
showed that intracellular lactate was consistently more
enriched than the extracellular pool (p = 0.047), whereas
no difference was found between the two pyruvate pools
(p=0.899). For EM, the intracellular and extracellular
enrichments of lactate were similar (p = 0.119), with the
intracellular pool consistently being slightly more
enriched. There was also no obvious difference in en-
richment between the two pyruvate pools under the EM
condition (p = 0.707).

Overall, the results showed that extracellular and
intracellular pyruvate were exchanging rapidly. The lac-
tate results, however, showed a small enrichment lag,
but interestingly, the differences in enrichment between
extracellular and intracellular pools were not greater for
EM despite having 10-fold more lactate than FM. The
compensation may be have been achieved by a rate of
exchange that is concentration dependent, i.e., faster ex-
change rate for higher concentrations.

Lactate exchange was high, but not fully reversible

Flux analysis was used to characterise the limits of lac-
tate exchange and to weigh-in on the importance of in-
cluding this flux parameter in future tracer models.
Particularly for such a nuisance parameter, whether by

experimental design, there is an opportunity to render
the dampening/buffering effect negligible and thus ignore
the exchange flux by keeping the initial lactate concentra-
tions low via medium refresh (e.g., FM). Otherwise, a dir-
ect spike-in (e.g., EM) approach is preferred because
disturbances to the cells are minimised.

The reaction network model used for flux analysis
consists of glycolysis, glutaminolysis, pentose-phosphate
pathway (PPP) and TCA cycle (Fig. 3). The pools of la-
belled and unlabelled cytoplasmic pyruvate are mainly
produced via glycolysis and glutaminolysis, respectively,
and are consumed proportionally via the TCA cycle. The
balance is accumulated reversibly as extracellular pyru-
vate and lactate.

The aim is to estimate the exchange fluxes of lactate
using the abundance and enrichment of extracellular lac-
tate, pyruvate and glucose. The magnitude of buffering
lactate has on pyruvate is correlated to the lactate ex-
change flux and the extracellular lactate abundance.
Here, our estimation approach will leverage the 10-fold
contrast in extracellular lactate abundance (EM vs. FM)
against the assumption of identical pyruvate producing
and consuming fluxes between the parallel EM and FM
experiments (apart from the lactate exchange flux). Note
that when the EM and FM datasets were fitted separ-
ately, the ratios of glutaminolysis to glycolysis were
found to be similar (see Additional file 1: S5). This con-
firmed that our assumption used for flux normalisation
was reasonable and that an increased glutaminolysis
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could not explain the lower pyruvate enrichment ob-
served for EM.

Here, we define the reversibility ratio of a reaction as a
measure of the cyclic conversion between two metabol-
ite pools relative to the net conversion of the reactant to
the product [36]. The enrichment consistency between
two mixing pools with respect to the reversibility ratio
follows an asymptote. For a simple two-pool mixing
problem, e.g., x/(x + 1), reversibility ratios of 0.1, 1, 2, 10
and 100 will yield 9.1, 50, 66.7, 91 and 99 % of the
equilibrium limit. Given a 5 % margin of error, a re-
action can be consider fully reversible when the

reversibility ratio is 220 or irreversible when the re-
versibility ratio is <0.05.

Flux analysis gave optimum reversibility ratios of 4
and 312 for FM and EM, respectively. By constraining
the reversibility ratios to be the same, the residual error
increased from 130 to 165, giving a combined optimum
reversibility ratio of 94. Different lactate exchange fluxes
for FM and EM were therefore required to produce a
better fit. The lower limit of the reversibility ratios were
subsequently determined by allowing the best residual
error to increase by 3.84 ()(%,05,1) [33]. The lower limits
were 2.3 and 9.2 for FM and EM, respectively, indicating
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significant lactate exchange flux, even for FM that had a
lower lactate concentration (Fig. 5b). With the same ap-
proach, the upper limit for FM was estimated to be 5.2,
indicating that lactate exchange cannot be assigned as
fully reversible by-default in a medium with low lactate.
The calculated lower limits (>2.3) strongly suggested
that lactate exchange must be treated as a bi-directional
flux in '*C-MFA, particularly when the initial concentra-
tion of extracellular lactate is 1 mM or greater. Unless a
lactate-free medium is used (e.g., serum-free or dialysed
serum), the exchange of unlabelled extracellular lactate
will cause the dilution of pyruvate enrichment. Flux
results also supported the possibility that the rate of
lactate exchange was concentration dependent. Lactate
exchange was not fully reversible when extracellular
lactate was low, as such, one also cannot simplify the **C-
MFA model by assuming a fully reversible lactate
exchange. Ultimately, the modelling treatment of lactate
exchange must be evaluated on a case-by-case basis.

PANC-1 cells treated with TNF-a increased fluxes into
pyruvate

We have established that '*C enrichment of extracellular
pyruvate is a good proxy for intracellular pool and that
lactate exchange is significant and bi-directional. We
followed to apply our findings in quantifying metabolic
differences in PANC-1 cells treated with TNF-a by *C
flux analysis, using only abundances and enrichments of
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lactate, pyruvate and glucose. The activity of glycolysis
and glutaminolysis can be inferred from the **C enrich-
ment pattern and abundance of pyruvate and lactate (see
Additional file 1: S6). Apart from evidence that it pro-
motes aerobic glycolysis [37], there is relatively limited
knowledge about the metabolic effects of TNF-a.

The same reaction network model as HEK293 was
used (Fig. 6a). The aim of this flux analysis was to quan-
tify fluxes of pathways producing and consuming pyru-
vate using extracellular metabolites.

Several metabolic pathways were excluded due to lack
of data. Here, we used glutamine as a generic source of
substrates not derived from glucose, lactate and pyru-
vate. This includes the uptake of unlabelled TCA cycle
intermediates from the medium and the catabolism of
amino acids into unlabelled cytoplasmic pyruvate. They
were lumped into the flux contribution of cytoplasmic
malic enzyme (ME1). Except for serine and glycine, the
catabolic pathways of all other amino acids and fatty
acids will only feed into pyruvate and TCA intermediates
(acetyl-CoA, «o-ketoglutarate, succinate, fumarate and
oxaloacetate). When labelled glucose is used, enrichment
data cannot differentially resolve the activity of these
pathways from glutaminolysis, all of which contribute
unlabelled carbon to the system. Pyruvate carboxylase
was omitted because anapleurotic flux cannot be re-
solved from glutaminolysis without the enrichment data
of TCA cycle intermediates. While alanine and aspartate
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are known to be significant by-products, it was assumed
that their secretion rates were small compared to lactate.
It was also assumed that biomass drains were negli-
gible compared to the fluxes described in the model,
especially when the cell culture experiments were
kept short (<5 h).

For both control and TNF-a-treated cells, extracellular
enrichment data showed accumulation of the M3 frac-
tion of lactate and pyruvate, but no appreciable accumu-
lation of wunlabelled metabolites (Fig. 6b). Having
established the precedence of significant lactate ex-
change, we no longer interpret this observation as “lac-
tate being solely produced from glucose”. Corresponding
intracellular data showed that cells had almost 60 % un-
labelled pyruvate (see Additional file 1: S7), reinforcing
the entry of lactate and other unlabelled substrates.

Flux results showed that the net lactate secretion
rates had increased from 0.81 to 0.97 puM/h/pg protein
with TNF-a treatment (p <0.001) (Fig. 6b). There was,
however, a greater increase in the ME1 flux (from 0.36
to 0.86 +£0.02 uM/h/ug protein) compared to the gly-
colysis flux at pyruvate kinase (PK) (from 1.23 to 1.58
+0.01 uM/h/ug protein). The net flux of mitochondrial
pyruvate carrier (PT) increased by 0.58 + 0.04 uM/h/ug
protein, suggesting that the oxidation of pyruvate via
the TCA cycle was increased in concomitant with a
greater pyruvate influx. The balance was secreted
directly as pyruvate, indicated by the increased accu-
mulation rate of extracellular pyruvate from 0.05 to
0.16 pM/h/ug protein.

Overall, flux results suggested that TNF-a treatment
of PANC-1 cells not only caused the up-regulation of
glycolysis but also increased fluxes toward pyruvate and
the oxidation of pyruvate via the TCA cycle. Note that
the ME1 flux integrates unspecified sources of un-
labelled cytoplasmic pyruvate by lumping them together
with glutaminolysis. This draws away potential interfer-
ence that will alter estimates for PK, PT and the extra-
cellular accumulation fluxes. Also, the exclusion of
potential effluxes for TCA cycle metabolites does not
suppress the flux through PT because the TCA cycle can
freely oxidise pyruvate via the mitochondrial malic en-
zyme. Altogether, the fluxes estimated around the pyru-
vate node (Fig. 6d) will remain the same with or without
the free exchange of TCA cycle metabolites.

Discussion

This work demonstrated significant exchange of pyru-
vate and lactate between extracellular and intracellular
pools, which affected the enrichment of pyruvate and
downstream metabolites. Intracellular pyruvate enrich-
ment is therefore a function of extracellular lactate and
pyruvate enrichment, not just incoming glucose and glu-
tamine. The large extracellular lactate pool appeared to
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partially explain the dampened dynamics seen in pyru-
vate enrichment compared to other glycolytic intermedi-
ates in a labelled glucose experiment. Although medium
refresh is recommended to minimise interference caused
by metabolic exchange of metabolites, including lactate
[34], the use of serum makes it impossible to completely
eliminate these issues. Unless defined medium or dia-
lysed serum is used when performing *C-MFA, flux
analysis should account for a reversible lactate exchange.
The absence of large initial extracellular lactate will
significantly shorten the time required to achieve iso-
topic steady state for pyruvate and downstream metabo-
lites. The results from the current study indicates that
because of an apparent free exchange between pools,
when performing '*C flux analysis in cultured cells,
extracellular enrichment data should be considered, in
addition to intracellular data.

There were two main tracer findings in the present
work that confirmed a fast lactate exchange flux. Firstly,
both extracellular pyruvate and lactate enrichment frac-
tions showed similar trajectories. Although the direct
inter-conversion of extracellular pyruvate and lactate
could explain this observation, this phenomenon is very
unlikely to occur. Intracellular pyruvate and lactate en-
richments, which also showed similar trajectories, were
key to confirm that the intracellular route was taken to
convert lactate to pyruvate and vice-versa. The second
evidence was that more labelled glucose did not lead to
more labelled pyruvate. Phosphoenolpyruvate, which
mirrors glucose enrichment, was essentially feeding into
a large pyruvate node that includes both extracellular
and intracellular pyruvate and lactate. The rate of intra-
cellular pyruvate enrichment is therefore dependent on
the abundance of extracellular lactate and pyruvate. The
flux modelling performed is a form of hypothesis testing,
whereby a reversible lactate exchange, ie., a missing
reaction [38], must be provided to adequately fit the FM
and EM enrichment data.

There is a growing recognition that lactate is both a
substrate as well a by-product. Literature has suggested
that tumours can utilise lactate [10], and this phenomenon
is often referred to by different terms, such as metabolic
symbiosis [39], two-compartment nutrient-sharing model
[2], reverse Warburg effect [18], and tumour-stroma co-
evolution [40, 41]. Cells switched to lactate consumption
upon glucose depletion without any appreciable metabolic
adjustment [42], and lactate can contribute to the by-
products alanine and glutamate in mammary carcinomas
even in the presence of glucose [43]. Tumours are known
for their ability to scavenge nutrients, such as fatty acids,
branched-chain amino acids and acetate [1, 20]; pyruvate
serves as an even more versatile energy and biomass pre-
cursor. Here, we showed that cells essentially have a large
pyruvate pool that extends beyond the cell membrane.
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Rather than being deliberately up-regulated, the tumour
cells’ ability to dynamically access extracellular lactate
to refill intracellular pyruvate may a persistent back-
ground process.

Glutamine, catabolised via the TCA cycle, has a very
diverse contribution to energy, biosynthesis and redox
balance [44]. By tracer experiments, the nutrient has
been linked to a compensatory role when mitochondrial
pyruvate carrier or pyruvate dehydrogenase was sup-
pressed [14, 23, 24], to the increased invasiveness of
ovarian cancer [12], and to lipogenesis in hypoxic condi-
tion [45]. As it appears that careful maintenance of TCA
metabolite pools would be crucial to cell proliferation,
the detection of 10-20 % enrichment in TCA cycle
intermediates in a labelled glucose experiment—
extracellularly—was therefore unexpected. This means
that, for the aforementioned labelled glutamine experi-
ments, if labelled metabolites are lost to the medium, then
the flux of labelled metabolites will taper off with increas-
ing distance from 2-oxoglutarate due to leakages. The
anapleurosis role of glutamine is therefore even more per-
vasive than the current estimates if compensation for
these losses is necessary. However, there may be other
substrates that can refill TCA cycle metabolites. For
example, in the control C2C12 myoblasts, TCA cycle me-
tabolites succinate, fumarate, malate and 2-oxoglutarate
were in total 55 to 70 % labelled by both glucose and glu-
tamine [24], with the balance unaccounted for. We raised
the exchange issue regarding TCA cycle metabolites with
the HPDE vs. PANC-1 experiment, where enriched TCA
cycle metabolites were found not only in the medium but
were also differentially enriched between the normal and
cancerous cell lines. More data, however, will be required
to quantify individual metabolites’ exchange dynamics.

The “leaky” cell model can be used to our advantage
to continuously monitor metabolism without harvesting
cells, simply by collecting small amounts of culture
medium over time. We showed that extracellular pyru-
vate and lactate closely mirrored intracellular enrich-
ments, albeit the latter displayed a slight lag. Under this
framework, TNF-a was used as a model to investigate
effects of chronic inflammation on cancer progression
and the metabolic reprogramming involved in metasta-
sis. With '*C enrichment and abundance of glucose, lac-
tate and pyruvate, PANC-1 cells treated with TNF-a
were shown to have increased glycolysis and lactate flux,
as well as the conversion of non-glucose substrates to
pyruvate represented by ME1 flux. Note that the in-
crease in pyruvate oxidation was inferred by flux balan-
cing (i.e., lactate and pyruvate net production rates were
constrained) and therefore will require further valid-
ation. In prostate and breast epithelial cells, TNF-a was
shown to increase aerobic glycolysis but not the TCA
cycle activity [37, 46].
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Tracer experiments are very effective grounds for test-
ing metabolic hypothesis, particularly in light of the
near-boundless design space and the ever-expanding
analytical coverage [47-49]. Parameter identifiability is
affected by the input substrate specification, and
therefore identifying the range of impinging substrates
can broaden our design scope. For example, this study
suggests the possibility of using labelled lactate to
quantify TCA cycle fluxes even if the cell is actively pro-
ducing lactate.

Conclusions

While tracer experiments provide information on the
sources that have contributed to the synthesis of a par-
ticular metabolite, metabolic activity is inferred and not
measured directly. Tracer data therefore must be inter-
preted in the right context. Here, we raised the prospect
that lactate is a significant input substrate in tracer ex-
periments if the metabolite is present in the medium.
This finding adequately explains why the enrichment of
pyruvate sustains such a long lag in a labelled glucose
experiment. This issue of significant exchange flux is
also applicable to TCA cycle metabolites and potentially
others as well. Nonetheless, the exchange fluxes between
intracellular and extracellular pools present an oppor-
tunity to profile metabolism in a time-resolved manner,
simply by sampling the culture medium.
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