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Abstract

Background: Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides,
pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A
non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In
this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients
undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex
networks of metabolites.

Methods: Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm
proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS)
and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard
identifications were confirmed and further analyzed via MetabolLync™ for metabolic network interactions.

Results: There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen
metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort.
Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC
compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and
adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had
not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of
short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and
pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of
those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel
metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously
reported CRC metabolome studies, and showed networks for metabolic pathway aberrations. In addition, we found
differences between the CRC and stool metabolomes.

Conclusions: Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet
metabolic pathways were conserved across both matrices. Larger patient-matched CRC, adjacent non-cancerous
colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule
differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention.
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Background

Metabolomics has helped cancer research to elucidate
specific biomarkers of disease that facilitate personalized
therapies and may improve clinical outcomes non-
invasively following primary or secondary diagnoses [1].
Colorectal cancer (CRC) is the third leading cause of
cancer-related death in the USA [2] and while there are
many screening techniques (i.e., colonoscopy, double
contrast barium enema, immunochemical-based fecal
occult blood test, and serum CEA test [3-5]), high
throughput and sensitive molecular tools are needed to
support identification of novel biomarkers for metabolic
pathway aberrations. Metabolomics is an emerging ana-
lytical tool that can be described as the systematic study
of the entire profile of small molecules in a clinical sam-
ple that are detected using mass spectrometry. Metabo-
lites from a multitude of matrices, such as serum, urine,
stool, and tissue, represent the downstream functional
products of gene expression and protein synthesis and
include environmental exposures and microbial metab-
olism, all of which influence CRC processes [6]. There
remains a gap in knowledge for the spectrum of meta-
bolic pathway alterations that co-exist in the CRC tumor
microenvironment which merits a non-targeted, global
metabolomics approach [7].

Chan et al. reported 31 metabolites in 2009 that were
differentially expressed in paired CRC and adjacent mu-
cosal samples, with glucose levels that were ~67 %
higher in the mucosa [8]. In 2014, Qiu et al. identified
15 significantly altered metabolites in matched surgical
specimens by comparing CRC and adjacent mucosa
from 3 different hospitals in China and 1 in the USA [9].
These metabolite signatures were then used to predict
the rate of recurrence and survival in patients after treat-
ment [9]. Most CRCs originate from polyps that exhibit
metabolic alterations due to distinct mutations that
allow them to replicate uncontrollably, evade host im-
munity, and become invasive (i.e., Warburg effect, APC/
KRAS/BRAF gene mutations, MSI status) [10-12].
Metabolic fingerprints that could distinguish adjacent
mucosa from CRC may reveal stages of pathogenesis, in-
form the frequency of follow-up screening, and response
to preventive measures needed for improved prognosis
(13, 14].

Paralleled investigations of CRC and adjacent mucosal
tissues alongside patient-matched stools that reflect the
tumor microenvironment are limited [3]. In the present
pilot study, we determined metabolite profile differences
between patient-matched CRC and adjacent mucosa and
performed metabolic pathway analyses to examine cor-
relations between metabolite expression. We hypothe-
sized that identification of metabolite signatures of
colonic tissue that are proximal to and within the CRC
represent potential metabolic targets for secondary CRC
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control, prevention, and treatment. The overlapping me-
tabolites from patient-matched stool and tissue metabo-
lomes as aberrancies in metabolic pathway networks
presented herein merit further interrogation for en-
hanced knowledge of CRC etiology and pathogenesis.

Methods

Ethics, consent, and permissions

Seventeen individuals with a scheduled colonic resection
after a CRC diagnosis were recruited for this study. All
patients provided informed, written consent and knew
that data would be used for publication. The patient inclu-
sion criteria for this study included not taking antibiotics
prior to surgery (intravenous pre-operative antibiotics
were admissible). Tissue and stool samples were collected
from Poudre Valley Hospital (PVH; Fort Collins, CO,
USA) and de-identified for personal information before
processing at Colorado State University (protocol nos.
10-1006 and 10-1670H).

Sample collection

Within 30 min of surgery, a 5-mm section of CRC (n = 16)
and adjacent mucosal tissue samples that were ~10 cm
proximal to the CRC (n = 17) were collected from resected
colons in the PVH Pathology Lab. Human tissue samples
were stored immediately at —-80 °C following collection
until processed for metabolomics. Stool samples were self-
collected by patients just prior to surgery prep in pre-la-
beled, coded containers by the patients and stored at
-80 °C immediately (n=13). Collection was verified
by the study technician who was present in the path-
ology lab and pre-op room for each resection. Patient-
matched CRC, adjacent mucosa, and stool were collected
for all individuals with the following exceptions: one pa-
tient was missing a CRC sample but had an adjacent mu-
cosa and stool sample, and four patients provided mucosa
and CRC but did not provide stool. All samples were
shipped to Metabolon, Inc. (Durham, NC, USA) for meta-
bolomics and multivariate statistical analyses. Table 1
shows human patient and tumor characteristics associated
with tissue samples analyzed herein [15].

Sample accessioning and preparation

Tissue and stool metabolite extractions for GC-MS and
UPLC-MS/MS were completed by Metabolon Inc. Both
platforms were chosen to provide broad, non-targeted
detection of metabolites. Each sample was accessioned
into the Metabolon Laboratory Information Management
System (LIMS) and assigned a unique identifier associated
with the original de-identified study code number. This
identifier was used to track all sample handling, tasks, and
results. All samples were maintained at —80 °C until ana-
lysis [16].
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Table 1 Colorectal cancer patient and tumor characteristics

Age (years) [mean + SDJ] 588+13.8
Sex
Males 13 (76 %)
Females 4 (24 %)
BMI (kg/m?) [mean =+ SD] 293+47
Tumor stage
Tx/TO 1(6 %)
Tis 16 %)
T1 3 (18 %)
T2 3 (18 %)
T3 8 (46 %)
T4 1(6 %)
Tumor location
Cecum 1(6 %)
Ascending 51 %)
Descending 1(6 %)
Sigmoid 6 (38 %)
Rectum 3 (19 %)
Tumor size (cm)
0<2 6 (35 %)
2<4 5 (29 %)
4<6 3 (18 %)
6<8 3 (18 %)
Tumor grade
Low 15 (94 %)
High 1(6 %)

Samples were extracted using the automated MicroLab
STAR® robotics system from Hamilton Company (Reno,
NV, USA). A set of recovery standards, tridecanoic
acid, chloro-phenylalanine, D6-cholesterol, and fluoro-
phenylglycine was added prior to the first step in the
extraction process for quality control purposes, with
final extraction standard concentrations ranging from
2.5 to 25 pg/mL. Sample preparation was conducted
using a methanol extraction to remove the protein
fraction while allowing the maximum recovery of
small molecules. Tissue samples were homogenized in
water (5 pL/mg of sample) using a GenoGrinder 2000
bead grinder (Glen Mills, Clifton, NJ, USA), shaking
for 5 min at 1000 strokes per minute at room tempe-
rature. Methanol extraction utilized five volumes of
methanol (5:1 methanol/water) with vigorous shaking at
room temperature for 2 min followed by centrifugation at
680 xg for 3 min. The resulting methanol extract was di-
vided into four fractions: one for analysis by UPLC-MS/
MS with positive ion mode electrospray ionization and
one for negative ion mode electrospray ionization, one for

Page 3 of 12

analysis by GC-MS, and one sample was reserved for
backup. Samples were placed briefly on a TurboVap® from
Zymark Corporation (Hopkinton, MA, USA) to remove
the organic solvent. The samples were stored overnight
under nitrogen before preparation for UPLC-MS/MS and
each sample was dried under vacuum for a minimum of
18 h before derivatization for GC-MS analysis. Samples
were analyzed in concert with several types of controls to
allow instrument performance monitoring and aid chro-
matographic alignment.

GC-MS analysis

Samples were derivatized under nitrogen using
bistrimethyl-silyltrifluoroacetamide and separated on a
5 % diphenyl/95 % dimethyl polysiloxane-fused silica
column (20 m x 0.18 mm ID; 0.18-pm film thickness)
with helium as carrier gas and a temperature ramp
from 60 to 340 °C in a 17.5-min period. Internal stan-
dards amylbenzene, 1-phenylhexane, 1-phenyloctane, 1-
phenyldecane, 1-phenyldodecane, hexadecylbenzene, octa-
decylbenzene, tetradecylbenzene, and 2,6-di-tert-butyl-4-
methylphenol were added to each sample (250 ng of
each standard per sample). Samples were analyzed on
a Thermo-Finnigan Trace DSQ fast-scanning single-
quadrupole mass spectrometer using electro-impact
ionization (EI) and operated at unit mass resolving power.
The scan range was from 50-750 m/z.

UPLC-MS/MS analysis

The UPLC-MS/MS portion of the platform was based
on a Waters ACQUITY UPLC and a Thermo-Finnigan
LTQ MS operated at nominal mass resolution, which
consisted of an electrospray ionization (ESI) source and
linear ion-trap (LIT) mass analyzer. The dried sample
extract was reconstituted in acidic or basic UPLC-
compatible solvents, each of which contained 11 to 13
injection standards at fixed concentrations [17]. One ali-
quot was analyzed using acidic positive ion-optimized
conditions and the other using basic, negative ion-
optimized conditions in two independent injections
using separate dedicated columns (Waters UPLC BEH
C18-2.1 x 100 mm, 1.7 pm). Extracts reconstituted in
acidic conditions were gradient eluted using water and
methanol containing 0.1 % formic acid, while the basic
extracts, which also used water/methanol, contained
6.5 mM ammonium bicarbonate. The MS analysis alter-
nated between MS and data-dependent MS/MS scans
using dynamic exclusion and the scan range was from
80-1000 m/z.

Data extraction and compound identification

Raw data was extracted and peak-identified as previously
described [14]. Biochemical identifications were based
on (1) retention index within a narrow RI window of the
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proposed identification, (2) accurate mass match to the
library +/- 0.005 amu, and (3) the MS/MS forward and
reverse scores between the experimental data and au-
thentic standards. The MS/MS scores were based on a
comparison of the ions present in the experimental
spectrum to the ions present in the library spectrum.
More than 3300 commercially available purified stand-
ard compounds have been acquired and registered into
LIMS for distribution to both the UPLC-MS/MS and
GC-MS platforms for determination of their analytical
characteristics [16]. All detected metabolites were identi-
fied with level 1 or 2 (noted by an asterisk symbol) con-
fidence of identification [18].

Metabolomics statistical analysis

Metabolite profiles in CRC patients were quantified in
terms of relative abundance and median scaled to 1. Fol-
lowing log transformation and imputation of missing
values, if any, with the minimum observed value for each
compound imputed, statistical analyses were performed
to identify significant differences between experimental
groups. Statistical analyses were performed in ArrayStu-
dio (Omicsoft, Cary, NC, USA), R version 2.14.2, and/or
SAS v9.4 [19]. Metabolite profile distinctions between
CRC and adjacent mucosa were evaluated by matched
pair ¢ tests. An estimate of the false discovery rate
(q value) was calculated to take into account the multiple
comparisons that normally occur in metabolomic-based
studies. A g value threshold of <0.10 was used to correct
for false discovery of statistically significant compounds
due to multiple hypothesis testing. Metabolites with ¢
values that exceeded this threshold were discarded from
further analysis. Fold difference (FD) was determined by
dividing the relative abundance of the metabolite in the
CRC by the relative abundance of the metabolite in the
adjacent mucosa. Metabolites with p values of <0.05 with
q values below the threshold of <0.10 were considered
statistically significant in this study.

Metabolic pathway networks and analysis

To visualize and analyze small molecules within relevant
networks of metabolic pathways, the detected metabo-
lites in CRC and adjacent mucosa were subjected to
MetaboLync pathway analysis (MPA) software (portal.-
metabolon.com). Significantly altered pathways were de-
termined by completing pathway set enrichment analysis
within MPA software which was determined by the fol-
lowing equation:

# of significant metabolites in pathway (k)/total # of
detected metabolites in pathway (m)/total # of signifi-
cant metabolites (#)/total # of detected metabolites (N)
or (k/m)/(n/N).

A pathway impact score greater than one indicates
that the pathway contains a higher number of
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experimentally regulated compounds relative to the
overall study in CRC than adjacent mucosa, suggesting
that the pathway may be of interest to the metabolite
perturbations observed. Finally, the significantly altered
pathways and metabolites were visualized via a Pathway
Visualizations tool using Cytoscape v 2.8.3 software [20].

Results

Metabolite differences between CRC and adjacent

mucosa

Principal component analysis (PCA) of CRC and adja-
cent mucosa samples revealed no distinct clustering by
tissue type (Fig. 1a). z-scores for 19 metabolites signifi-
cantly different between CRC and adjacent mucosa are
illustrated in Fig. 1b. Table 2 lists the metabolites and
metabolic pathways with significant differences between
CRC and adjacent mucosa in 17 patients (p < 0.05). Data
are presented as the mean fold difference in CRC me-
tabolite abundance compared to adjacent mucosa for
all patients. The 5 metabolites that showed higher
abundance in CRC includes isobar: betaine aldehyde,
N-methyldiethanolamine (2.68-fold) representing gly-
cine, serine, and threonine metabolic pathways, adenylo-
succinate (1.88-fold) representing the purine (adenine
containing) metabolic pathway, isovalerate (1.45-fold)
representing leucine, isoleucine, and valine metabolic
pathways, valerate (1.37-fold) representing the short-chain
fatty acid metabolic pathway, and N1-methyl-2-pyridone-
carboxamide (1.29-fold) representing nicotinate and nico-
tinamide metabolic pathways. Table 2 further shows the
14 metabolites with lower abundance in CRC compared to
mucosa. These include 2-aminoadipate (0.93-fold) repre-
senting the lysine metabolic pathway, stearoyl sphingo-
myelin (0.9-fold) representing the sphingolipid metabolic
pathway, 4-hydroxyphenylpyruvate (0.88-fold) representing
phenylalanine and tyrosine metabolic pathways, sorbitol
(0.87-fold) representing fructose, mannose, and galactose
metabolic pathways, alpha-hydroxyisovalerate (0.86-fold)
representing leucine, isoleucine, and valine metabolic
pathways, cys-gly, oxidized (0.84-fold) representing the glu-
tathione metabolic pathway, trytophylglycine (0.84-fold),
aspartylvaline (0.81-fold), and aspartyltryptophan (0.76-fold)
representing the dipeptide metabolic pathway, deoxy-
cholate (0.84-fold) and 7-ketodeoxycholate (0.81-fold)
representing secondary bile acid metabolism, aspara-
gine (0.81-fold) representing alanine and aspartate
metabolic pathways, and glucose-6-phosphate (0.64-fold)
and fructose-6-phosphate (0.75-fold) representing glyco-
lytic, gluconeogenic, and pyruvate metabolic pathways.
The information on the metabolic pathway, metabolite
name, platform of detection, Kyoto Encyclopedia of Genes
and Genomes (KEGG), Human Metabolome DataBase
(HMDB), and PubChem identifiers for all 19 metabolites
is listed in Additional file 1: Table S1.
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Fig. 1 Metabolomics analysis of CRC and adjacent mucosa. a PCA CRC and adjacent mucosa and b z-scores for the 19 significantly different

Metabolic network differences between CRC and adjacent
mucosa

The pathway set enrichment analysis was performed to
elucidate the metabolic pathways affected by metabolite
distinctions between CRC and adjacent mucosa. This

analysis revealed significant perturbation of 14 metabolic
networks, including but not limited to short-chain fatty
acid (23.32), fructose, mannose, and galactose (5.83), and
glycolytic, gluconeogenic, and pyruvate (5.18) metabolic
pathways (Fig. 2). The Cytoscape Pathway Classification
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Table 2 Metabolites with statistically significant differences between colorectal cancer tissue and adjacent mucosa

Metabolic pathway Metabolite p value  Fold difference (CRC/mucosa)
Glycine, serine, and threonine metabolism Isobar: betaine aldehyde, N-methyldiethanolamine  0.015 26871
Purine metabolism, adenine containing Adenylosuccinate 003 1.881
Leucine, isoleucine, and valine metabolism Isovalerate 0.0073 1457
Short-chain fatty acid Valerate 0013 1371
Nicotinate and nicotinamide metabolism N1-methyl 2-pyridone-5-carboxamide 0018 1.291
Lysine metabolism 2-aminoadipate 0.043 093]
Sphingolipid metabolism Stearoyl sphingomyelin 0.049 09]
Phenylalanine and tyrosine metabolism 4-hydroxyphenylpyruvate 0.05 0.88]
Fructose, mannose, and galactose metabolism Sorbitol 0.029 0.87]
Leucine, isoleucine, and valine metabolism Alpha-hydroxyisovalerate 0.037 086
Glutathione metabolism Cys-gly, oxidized 0.047 0.84]
Dipeptide Tryptophylglycine 0.041 0.84]
Secondary bile acid metabolism Deoxycholate 0.045 0.84]
7-ketodeoxycholate 0.04 081]
Alanine and aspartate metabolism Asparagine 0.025 081}
Dipeptide Aspartylvaline 0.035 081]
Aspartyltryptophan 0019 0.76}
Glycolysis, gluconeogenesis, and pyruvate metabolism  Fructose-6-phosphate 0.0082  0.75]
Glucose-6-phosphate (G6P) 00025 064]

1 designates metabolites with significantly (p <0.05) higher expression in CRC when compared with adjacent mucosa (metabolite ratio of >1.00) and | designates
metabolites with significantly (p < 0.05) higher expression in adjacent mucosa when compared with CRC (metabolite ratio of <1.00)

Network view of impacted metabolic networks for lipid,
carbohydrate, amino acid, and cofactors and vitamin path-
way metabolites are shown in Fig. 3. Figure 3 shows the
following CRC discriminatory metabolites in their respect-
ive metabolic network. These are stearoyl sphingomyelin
(sphingolipid metabolism), valerate (short-chain fatty acid

metabolism), 7-ketodeoxycholate and deoxycholate (sec-
ondary bile acid metabolism), fructose-6-phosphate and
glucose-6-phosphate  (glycolysis, gluconeogenesis, and
pyruvate metabolism), sorbitol (fructose, mannose, and
galactose metabolism), 4-hydroxyphenylpruvate (phenyl-
alanine and tyrosine metabolism), isobar: betaine

Short Chain Fatty Acid

Fructose, Mannose and Galactose Metabolism
Glycolysis, Gluconeogenesis, and Pyruvate Metabolism
Alanine and Aspartate Metabolism

Leucine, Isoleucine and Valine Metabolism

Secondary Bile Acid Metabolism 4.66
Glutathione Metabolism :|3.89
Lysine Metabolism :|3,89
Sphingolipid Metabolism :Is.sg

Glycine, Serine and Threonine Metabolism |3.33
Nicotinate and Nicotinamide Metabolism I3,33
Purine Metabolism, Adenine containing |2.91

Phenylalanine and Tyrosine Metabolism |1.94

Dipeptide |1,89
0

5 10 15

20

25

Fig. 2 Pathway set enrichment of metabolic networks distinguished between CRC and adjacent mucosa. There were 14 pathway distinctions
determined by a pathway impact score greater than 1. The pathway impact score was determined as defined in the "Methods” section
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aldehyde, N-methyldiethanolamine (glycine, serine, and
threonine metabolism), 2-aminoadipate (lysine metabol-
ism), asparagine (alanine and aspartate metabolism),
cys-gly, oxidized (glutathione metabolism), alpha-
hydroxyisovalerate and valerate (leucine, isoleucine, and
valine metabolism), and N1-methyl-2-pyridone-5-car-
boxamide (nicotinate and nicotinamide metabolism).

Stool metabolome of CRC patients

In this study, we detected 500 metabolites in the stool
matrix of 13 CRC patients. The metabolic pathway, me-
tabolite name, platform of detection, KEGG, HMDB,
and PubChem identifiers of all detected stool metabo-
lites can be found in Additional file 1: Table S2. This
includes 102 amino acid metabolites representing alanine
and aspartate, glutamate, glutathione, glycine, serine, and
threonine, histidine, leucine, isoleucine, and valine, lysine,

methionine, cysteine, SAM, and taurine, phenylalanine
and tyrosine, polyamine, tryptophan, and urea cycle;
arginine and proline metabolic pathways. It also included
27 carbohydrate metabolites representing aminosugar, di-
saccharides and oligosaccharides, fructose, mannose, and
galactose, glycogen, glycolysis, gluconeogenesis, and pyru-
vate, pentose, and metabolic pathways. Twenty cofactors
and vitamin metabolites representing ascorbate and
aldarate, hemoglobin and porphyrin, nicotinate and
nicotinamide, pantothenate and CoA, riboflavin, tetra-
hydrobiopterin, thiamine, tocopherol, and vitamin B6
metabolic pathways were identified. Additionally, we
observed 7 energy metabolites in the stool metabo-
lome including oxidative phosphorylation and TCA
cycle intermediates. The largest portion of the CRC
stool metabolome were metabolites involved in lipid
metabolism representing carnitine, endocannabinoid,
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fatty acid, fatty alcohol, long chain, glycerolipid, inosi-
tol, ketone bodies, lysolipid, monoacylglycerol,
phospholipid, primary and secondary bile acid,
sphingolipid, steroid, and sterol metabolic pathways.
There were 25 nucleotide metabolites representing
purine and pyrimidine metabolism, 106 peptide me-
tabolites representing dipeptide, gamma-glutamyl
amino acid, and polypeptide metabolism, and 71 xe-
nobiotics representing chemical, drug, food compo-
nent/plant and  xanthine metabolic  pathways
(Table 3).

Metabolome overlap and comparison between CRC and
stool

We next identified the metabolome overlap and dif-
ferences across CRC, adjacent mucosa, and stool. A
total of 728 small molecules were detected in CRC,
adjacent mucosa, and stool collected from recently di-
agnosed CRC patients undergoing colonic resection.
Compared to the 19 discriminatory metabolites be-
tween CRC and adjacent mucosa, only 7 of these dis-
criminatory metabolites were also detected in the
stool metabolome. These metabolites were alpha-
hydroxyisovalerate, isovalerate, N1-methyl-2-pyridine-
5-carboxamide,  7-ketodeoxycholate,  deoxycholate,
valerate, and tryptophylglycine. The Venn diagram in
Fig. 4 shows the 213 metabolites that were common
to all 3 sample matrices when compared to the 728
total metabolites detected. Hydrochlorothiazide and p-
acetamidophenylglucuronide were identified only in
CRC whereas mannitol was specific to adjacent mu-
cosa. There were 285 unique stool metabolites, of
which 214 stool metabolites overlapped in mucosa,
and 214 metabolites shared between stool and CRC.
7-beta-hydroxycholesterol and 2-oxindole-3-acetate
were uniquely shared between stool and CRC and
stool and mucosa, respectively. Additional file 1:
Figure S1 further illustrates the distinct and overlap-
ping tissue and stool metabolites of gut microbial and
host origins [21].

Discussion

This multi-platform CRC and adjacent mucosa metab-
olome analysis led to the identification of 11 novel
metabolites that have not previously been detected for
CRC relevance in animals or humans. Adenylosuccinate,
isovalerate, valerate, N1-methyl-2-pyridone-5-carboxa-
mide, stearoyl sphingomyelin, 4-hydroxyphenylpyruvate,
aspartylvaline, aspartyltryptophan, tryptophyglycine, glu-
cose-6-phosphate, and fructose-6-phosphate merit further
investigation as key small molecules in CRC pathogenesis.
It is noteworthy that tryptophylglycine was detected in a
fecal metabolomics study comparing CRC patients and
matched healthy controls [22], whereas our report is the
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first to our knowledge to show tryptophylglycine metabol-
ite levels in human tissue. One limitation of this study is
the small sample size and subsequent low representation
of each tumor stage and location. A strength of this pilot
investigation was the capacity to obtain CRC and adjacent
mucosa with stool samples from the same patient and
utilize a multi-platform analytical approach that is
comparable to other human datasets (GC/LC-MS)
[8, 9, 23].

Our findings supported the identification of 8 metabo-
lites that were discriminatory between CRC and adjacent
mucosa in previous reports and included 2-aminoadipate,
isobar:  betaine aldehyde, N-methyldiethanolamine,
alpha-hydroxyisovalerate, cys-gly, oxidized, deoxycholate,
7-ketodeoxycholate, sorbitol, and asparagine [9, 14, 23].
However, these results were not consistent by the
relative abundance, such that the asparagine, 2-
aminoadipate, alpha-hydroxyisovalerate, deoxycholate,
7-ketodeoxycholate, sorbitol and cys-gly, oxidized had
higher expression in adjacent mucosa compared to
CRC, whereas isobar: betaine aldehyde, N-
methyldiethanolamine had higher expression in CRC
than in adjacent mucosa in this study [14]. Intraindi-
vidual differences in tumor heterogeneity and analyt-
ical  platforms part, explain these
discrepancies [11].

Two secondary bile acid metabolites (7-ketodeoxycho-
late and deoxycholate) showed higher expression in adja-
cent mucosa compared with CRC and were detectable
across sample matrices (Additional file 1: Table SI).
These metabolites are associated with generation of
reactive oxygen and nitrogen species [24—27], altering
the stability of the cell and mitochondrial membranes
[25, 26], and inducing oxidative DNA damage [25, 26],
mutation [25, 26], and apoptosis in CRC [25, 26]. Deoxy-
cholic acid was shown to be diet-modifiable in the
plasma metabolome [28], and had higher expression in
adjacent mucosa in this study. Alternatively, the variable
levels we observed between tissue matrices could be due
to gut microbial metabolism. The gut mircobiota are
known to convert primary bile acids to secondary bile
acids, a process that may be pH-dependent [29]. Variable
gut microbial populations throughout the colon and
from person to person may also contribute to the differ-
ential expression of secondary bile acids observed in this
study (Fig. 3a).

Two additional key small molecules of CRC patho-
genesis were elucidated in this global, metabolite profil-
ing: N1-methyl-2-pyridone-5-carboxamide and sorbitol.
These small molecules are important because they were
discriminatory between CRC and adjacent mucosa in
this study and they have been reported in disease con-
texts including chronic renal failure and diabetes
[30, 31]. N1-methyl 2-pyridone-5-carboxamide (N125)

may, in
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Table 3 CRC stool metabolite numbers within each of the

assigned metabolic pathways

Metabolic pathway

Number of metabolites

Amino acid
Alanine and aspartate
Glutamate
Glutathione
Glycine, serine, and threonine
Histidine
Leucine, isoleucine, and valine
Lysine
Methionine, cysteine, SAM, and taurine
Phenylalanine and tyrosine
Polyamine
Tryptophan
Urea cycle; arginine and proline
Carbohydrate
Aminosugar
Disaccharides and oligosaccharides
Fructose, mannose, and galactose
Glycogen
Glycolysis, gluconeogenesis, and pyruvate
Pentose
Cofactors and vitamins
Ascorbate and aldarate
Hemoglobin and porphyrin
Nicotinate and nicotinamide
Pantothenate and CoA
Riboflavin
Tetrahydrobiopterin
Thiamine
Tocopherol
Vitamin B6
Energy
Oxidative phosphorylation
TCA cycle
Lipid
Carnitine metabolism
Endocannabinoid
Fatty acid
Fatty alcohol, long chain
Glycerolipid
Inositol
Ketone bodies
Lysolipid

Monoacylglycerol

102
5
4
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Table 3 CRC stool metabolite numbers within each of the
assigned metabolic pathways (Continued)

Phospholipid 1
Primary bile acid 6
Secondary bile acid 12
Sphingolipid 4
Steroid 9
Sterol 7
Nucleotide 25
Purine and pyrimidine 1
Purine metabolism 5
(Hypo) xanthine/inosine containing 2
Purine metabolism, adenine containing 4
Purine metabolism, guanine containing 1

Pyrimidine metabolism, cytidine containing
Pyrimidine metabolism, orotate containing 4
Pyrimidine metabolism, thymine containing 7

Pyrimidine metabolism, uracil containing

Peptide 106
Dipeptide 99
Gamma-glutamyl amino acid 4
Polypeptide 3

Xenobiotics 71
Benzoate 4
Chemical 13
Drug 10
Food component/plant 33
Xanthine 11

has been increased in high fat diet-induced obesity,
which is an elevated CRC risk factor [32]. N125 was
also shown as diet-modifiable in urinary metabolomes
[28], supporting its possible importance as a diet-
modifiable mediator of CRC pathogenesis. Addition-
ally, excess sorbitol has been associated with diabetic-
related microvascular complications and retinopathy,
and its accumulation was associated with osmotic and
oxidative stress damage to the endothelium [30].
Beyond specific metabolite differences, we also evalu-
ated entire metabolic networks to interrogate their
contributions to both CRC and mucosal tissue microen-
vironments. The perturbation of short-chain fatty acid
metabolism between CRC and adjacent mucosa is note-
worthy because of the breadth of short-chain fatty
acid metabolites emphasized in CRC prevention and
control research. Short-chain fatty acids such as bu-
tyrate, propionate, and valerate have been shown to
cause growth arrest and differentiation in human
colorectal cancer cells [33]. In our study, short-chain
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Fig. 4 Venn diagram of the total number of metabolites detected across CRC, adjacent mucosa, and stool samples from (n = 17) colorectal cancer
patients. Nearly all metabolite detections were shared across CRC and adjacent mucosal tissue. Two-hundred fifteen metabolites from the stool

metabolome were also detected in tissue matrices

fatty acid metabolism had a pathway impact score of
23.32 and contained the discriminatory metabolite valer-
ate. These results taken together merit continued metabo-
lomics investigation of short-chain fatty acids in the
context of CRC pathogenesis and prevention, specifically
valerate [34—36]. In addition to short-chain fatty acid me-
tabolism, our pathway analysis revealed linkages to the
glycolytic/gluconeogenic pathway and CRC tumorigenesis
(pathway impact score of 5.8). This metabolic pathway
contained 2 discriminatory metabolites: fructose-6-
phosphate and  glucose-6-phosphate.  Glucose-6-
phosphate and fructose-6-phosphate represent metab-
olites/intermediates of cellular respiration that are
established for enhancing cancer cell energy required for
rapid proliferation [37]. In this study, we observed de-
pleted glucose-6-phosphate and fructose-6-phosphate
levels in tumor tissues relative to adjacent mucosa which
implies a Warburg effect or a switch from oxidative to
substrate-level phosphorylation for energy production
[38]. Larger cohort investigations may be needed to estab-
lish the signatures associated with short-chain fatty acid
metabolism, fructose, mannose, and galactose metabolism,
glycolysis, gluconeogenesis, and pyruvate metabolism, ala-
nine and aspartate metabolism, leucine, isoleucine, and
valine metabolism, and secondary bile acid metabolism
(Fig. 2). Given that the CRC metabotype has not yet been
expanded to provide metabolite information specific to
the colonic location affected (i.e., proximal, distal, rectum),
future investigations should consider this to be another

experimental parameter by which to discriminate samples
from each other and for enhanced precision in biomarker
discovery [8].

Of the 703 metabolites detected in this study, 29.2 %
of metabolites overlap across tissue and stool matrices
(Fig. 4). Colorectal tissue and stool metabolite profiles
derive from several inputs including altered gene expres-
sion, oxidative stress responses, xenobiotic metabolism,
and the utilization of alternative carbon sources from
the gut microbiota. Findings from this pilot investigation
of CRC and stool raises awareness regarding the utility
of stool metabolites as relevant indicators of CRC tissue
microenvironment [39, 40].

Conclusions

This pilot, global, non-targeted metabolome study iden-
tified various metabolic alterations in both individual
metabolites and metabolic pathway networks between
CRC and adjacent mucosa from CRC patients. In
addition, we observed a low percentage of conserved de-
tection across tissue and stool matrices (213 shared me-
tabolites of 728 total metabolites; 29.2 % conserved
metabolites). Findings from this study reiterate the com-
plexity of CRC biology with regard to individual pheno-
types and the utility for a broad-spectrum metabolite
detection platform to guide our approaches to treat-
ment, control, and prevention of this complex
malignancy.
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