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Abstract

Cancer is a heterogeneous set of diseases characterized by different molecular and cellular features. Over the past
decades, researchers have attempted to grasp the complexity of cancer by mapping the genetic aberrations
associated with it. In these efforts, the contribution of mitochondria to the pathogenesis of cancer has tended to
be neglected. However, more recently, a growing body of evidence suggests that mitochondria play a key role in
cancer. In fact, dysfunctional mitochondria not only contribute to the metabolic reprogramming of cancer cells but
they also modulate a plethora of cellular processes involved in tumorigenesis. In this review, we describe the link
between mutations to mitochondrial enzymes and tumor formation. We also discuss the hypothesis that mutations

metabolic landscape.

to mitochondrial and nuclear DNA could cooperate to promote the survival of cancer cells in an evolving
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Review

Background

Current evidence suggests that the eukaryotic cell origi-
nates from the symbiosis between a hydrogen-dependent
archaebacterium, the host cell, and a hydrogen-producing
eubacterium, the ancestor of modern mitochondria, started
two billion years ago [1,2]. This cooperation granted to the
newly formed eukaryotic cell several evolutionary advan-
tages, including a more efficient metabolism [1], the detoxi-
fication from the harms of the raising levels of atmospheric
oxygen [1], and the ability to form multicellular organisms
[3]. During evolution, the interaction between mitochon-
dria and the host cell evolved into a more intimate relation-
ship and mitochondria lost control of many of their
functions by transferring part of their genome to the nu-
cleus [4]. However, although subordinate to the nucleus,
mitochondria maintained the capacity to communicate to
the rest of the cells. Mitochondria are in fact the gate-
keepers of the eukaryote's cell viability by regulating pro-
grammed cell death [5], and they control nuclear functions
by the production of reactive oxygen species (ROS), by the
modulation of calcium levels [6], and by the trafficking of
small molecule metabolites [7]. It is therefore not surprising
that the aberrant communication between mitochondria
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and the rest of the cell may lead to alterations of cellular
homeostasis and, in multicellular organisms, to organismal
dysfunction. Indeed, altered mitochondrial function has
been related to diverse pathological conditions, including
cardiovascular disorders, muscular degeneration, neurode-
generative disorders [8], and cancer [9]. Although the con-
nection between mitochondria dysfunction and cancer has
historically focused on metabolism [10], their contribution
to cell homeostasis goes far beyond metabolism. In this re-
view, we will describe how mitochondrial dysfunction
caused by either nuclear or mitochondrial DNA mutations
of key metabolic enzymes can initiate a complex cellular re-
programming that supports tumor formation and growth.

Defects in TCA cycle enzymes and cancer

Among the metabolic pathways that operate in the mito-
chondria, the tricarboxylic acid (TCA) cycle has recently
been in the spotlight of the field of oncology. TCA cycle
enzymes are encoded by nuclear DNA (nDNA) and are lo-
cated in the mitochondrial matrix, with the exception of
succinate dehydrogenase, which is embedded in the inner
mitochondrial membrane, facing the matrix. In the last
decade, several enzymes of the TCA cycle, which we will
briefly describe in the following paragraphs, have been
found mutated in both sporadic and hereditary forms
of cancer.
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Citrate synthase

Citrate synthase (CS) catalyzes the first committed step of
the TCA cycle, ie. the irreversible condensation of acetyl
coenzyme A (AcCoA) and oxaloacetate into citrate. Citrate
can then proceed into the TCA cycle or can be exported to
the cytosol and used for protein acetylation or fatty acid
biosynthesis [11] (Figure 1A). Evidence for a role of citrate
synthase (CS) in cancer is sparse and controversial: CS was
found to be increased in pancreatic ductal carcinoma [12]
and renal oncocytoma [13] but downregulated in various
cervical cancer cell lines [14]. Unfortunately, whether these
changes are a simple reflection of variations in mitochon-
drial mass has not been determined. Furthermore, it is not
clear how the deregulation of CS contributes to tumorigen-
esis. Two scenarios can be hypothesized. On the one hand,
increased CS activity, by providing more citrate, could be
an advantage for cancer cells that depend on increased fatty
acid biosynthesis, such as pancreatic cancer [15]. On the
other hand, the loss of CS, by inducing mitochondrial dys-
function could trigger a tumor-supporting glycolytic
switch, commonly found in cancer cells. Interestingly, the
loss of CS was linked to the induction of the epithelial-to-
mesenchymal transition (EMT), suggesting that CS defi-
ciency not only promotes a metabolic rewiring but also
indirectly supports cancer cell invasion and metastasis [14].
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Aconitase

Aconitate hydratase or aconitase (Aco) is a Fe-S cluster en-
zyme that performs the reversible isomerization of citrate
to isocitrate via the intermediate cis-aconitate (Figure 1A).
The role of aconitase in tumor formation has been mainly
investigated in the prostate where this enzyme plays an im-
portant physiological role. In normal prostate epithelium
aconitase activity is inhibited by high levels of zinc, which
leads to an extraordinary accumulation of citrate [16]. In
prostate cancer, however, aconitase activity is restored, re-
establishing citrate oxidation [17] and decreasing fatty acid
synthesis [18]. The subsequent decrease in citrate is a key
metabolic feature of the transformed epithelium, making
citrate a useful in vivo marker for discriminating prostate
cancer from surrounding healthy regions [19]. In contrast
to the tumor-promoting role of aconitase in prostate can-
cer, the inhibition of this enzyme has been observed in fu-
marate hydratase (FH)-deficient cancer cell lines. In these
cells, the accumulation of the TCA cycle intermediate fu-
marate causes the inactivation of the iron-sulfur cluster of
the enzyme, leading to a complete loss of aconitase activity
(see paragraph on fumarate hydratase (FH) and [20]).
Decreased expression of aconitase has also been ob-
served in gastric cancer, and its expression is a prog-
nostic marker of disease progression [21]. Whether
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Figure 1 Mitochondrial dysfunctions in cancer. Schematic representation of mitochondrial enzymes involved in cancer, focusing on enzymes
of the TCA cycle (A) and of the respiratory chain and ATP synthase (B). The type of cancer associated with each individual enzyme is listed in
boxes. The color of the text indicates if the enzyme has been found upregulated (red), downregulated (blue), or mutated (black) in the given
tumor type. CS citrate synthase, Aco aconitase, IDH isocitrate dehydrogenase, IDH* mutant IDH, OGDH oxoglutarate dehydrogenase, SDH succinate
dehydrogenase, FH fumarate hydratase, ME malic enzyme, MDH malate dehydrogenase, PDH pyruvate dehydrogenase, OG 2-oxoglutarate, 2HG
2-hydroxyglutarate, HLRCC hereditary leiomyomatosis and renal cell cancer, PGL/PCC hereditary paraganglioma and pheochromocytoma, C/-CV
complex |-V, Cyt ¢ cytochrome ¢, UQ ubiquinone, UQH, ubiquinol, ROS reactive oxygen species, ATPIF ATP synthase inhibitory factor. Dashed lines
indicate a series of reaction in a complex pathway, whereas solid lines indicate a single step reaction.
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mitochondrial aconitase has additional roles beyond
regulating citrate availability is currently unknown.

Isocitrate dehydrogenase

Isocitrate dehydrogenase (IDH) catalyzes the reversible
conversion of isocitrate into 2-oxoglutarate (OG). In
eukaryotes, one nicotinamide adenine dinucleotide (NADH)-
dependent (IDH3) and two nicotinamide adenine dinucleo-
tide phosphate (NADPH)-dependent (IDH1 and IDH2)
isoforms of IDH exist (Figure 1A). Mutations of both
the cytoplasmic (IDH1) and the mitochondrial (IDH2)
NADPH-dependent isoforms have been found in vari-
ous human cancers, including colon cancer [22], glio-
blastoma [23], glioma [24], acute myeloid leukemia [25],
prostate cancer [26], B-acute lymphoblastic leukemia
[26], osteosarcoma [27], and intrahepatic cholangiocar-
cinoma [28]. Oncogenic mutations confer a neomorphic
activity to IDHs, which instead of converting isocitrate
in OG, reduce OG into the R-enantiomer of 2-
hydroxyglutarate (R-2HG), which accumulates up to
millimolar levels in cancer cells (See Figure 1A and
[29,30]). This poorly characterized metabolite is now
considered a major contributor to the oncogenic activity
of mutated IDHs. Indeed, the incubation of cells with R-
2HG promotes cytokine independency and blocks differ-
entiation in hematopoietic cells, inducing leukemogenesis
[31]. The tumorigenic activity of 2HG has been attributed
to its inhibitory effect on various OG-dependent dioxy-
genases, including the hypoxia-inducible factors (HIFs)
prolyl hydroxylases (PHDs), histone demethylases, and the
ten-eleven translocation (TET) family of DNA demethy-
lases [32,33]. The first evidence that 2HG acted upon
DNA methylation arose in 2010 when a large-scale DNA
methylation analysis of human leukemia found that the
expression of mutated IDH, by increasing 2-HG levels, led
to DNA hyper-methylation, a broad epigenetic change as-
sociated with poor hematopoietic differentiation. Of note,
such a peculiar change in DNA methylation was dependent
on the inhibition of TET2 caused by 2HG [34]. A similar
epigenetic fingerprint has also been observed in a subset of
breast tumors where 2HG was found to accumulate to mil-
limolar levels. Interestingly, however, in these tumors, the
accumulation of 2HG was not caused by overt IDH muta-
tions but, rather, by a particular metabolic rewiring insti-
gated by Myc overexpression [35]. These results suggest
that 2HG has an important role in tumorigenesis and that
it can accumulate in cancer cells not only upon IDH muta-
tions but also as a consequence of metabolic derangements,
including hypoxia [36]. More recent results revealed that,
besides inhibiting DNA demethylases, 2HG accumulation
also causes profound changes in histone methylation [37],
indicating that this metabolite has multiple and well-
defined epigenetic roles. The inhibitory effects of 2HG to-
ward PHDs are instead more controversial and appear
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isomer-specific. In fact, while the S-enantiomer of 2HG (S-
2HG) was shown to inhibit PHDs, R-2HG activates them,
leading to accelerated degradation of HIFs [38]. Although
initially unclear, the paradoxical activation of PHDs by R-
2HG can be explained by its non-enzymatic oxidation to
OG, the natural substrate of these enzymes [39]. Of note,
these results imply that HIF is not required for R-2HG-
induced tumorigenesis and, on the other hand, suggest that
this transcription factor might act as a tumor suppressor in
this specific context.

Succinate dehydrogenase

Succinate dehydrogenase (SDH) is an enzyme complex
bound to the inner mitochondrial membrane that converts
succinate into fumarate, in a reaction coupled to the reduc-
tion of flavin adenine dinucleotide (FAD) to FADH,. SDH
represents a unique link between the TCA cycle and the
mitochondrial respiratory chain, where it is also known as
respiratory chain complex II (Figure 1A,B). SDH is the only
known enzyme of the respiratory chain completely encoded
by nDNA and is devoid of proton pumping activity. Inacti-
vating mutations of SDH subunits and assembly factors
have been linked to different types of hereditary and spor-
adic forms of cancer, including hereditary paraganglioma
and pheochromocytoma (PGC/PCC) [40], renal carcinoma
[41], gastrointestinal stromal tumor [42], and breast cancer
[43]. SDH can behave as a classic tumor suppressor gene
since the mutated allele is inherited in a heterozygous fash-
ion, while the remaining wild type allele is lost in tumor
samples. Similarly to mutant IDHs, most of the oncogenic
activity of SDH mutations has been attributed to a metabol-
ite, succinate, which accumulates in SDH-deficient cells.
The oncogenic role of succinate was initially linked to the
inhibition of PHDs and the subsequent stabilization of HIF
[44]. More recently, succinate was found to be a prototyp-
ical ‘epigenetic hacker’ [45], capable of inhibiting both
DNA [46,47] and histone demethylases [48], leading to epi-
genetic changes that overlap with those observed in mutant
IDH cancers [49].

Fumarate hydratase

FH catalyzes the reversible conversion of fumarate to mal-
ate (Figure 1A). Germline mutations of FH were originally
discovered in hereditary leiomyomatosis and renal cell
cancer (HLRCC) [50]. More recently FH germline muta-
tions were also found in a subset of PGC/PCC [49,51]. FH
was also found to be downregulated in glioblastoma [52]
and sporadic clear cell carcinoma [53] and deleted in non-
Myc-amplified neuroblastoma [54]. Similarly to SDH, FH
behaves as a classic tumor suppressor. Part of its tumori-
genic activity has been attributed to the abnormal accu-
mulation of fumarate, which peaks to high millimolar
levels in FH-deficient cancer cells [55]. Fumarate shares
some similarities with succinate and 2HG in that it can
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inhibit several OG-dependent enzymes, including PHDs
[56], and histone and DNA demethylases [46]. Interest-
ingly, however, fumarate possesses another unique prop-
erty linked to its chemical structure. In fact, fumarate is a
moderately reactive o,-unsaturated electrophilic metabol-
ite that, under physiological conditions, can covalently
bind to cysteine residues of proteins in a process called
succination [57,58]. Several proteins are succinated in FH-
deficient cells, including aconitase [20], and Kelch-like
ECH-associated protein 1 (Keapl) [57,58]. Of note, the
succination of Keapl abrogates its inhibitory activity to-
ward the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
transcription factor, leading to the activation of several
antioxidant genes thought to play key roles in supporting
tumor formation [57,58]. Interestingly, also, the reactive
thiol residue of GSH is subject to succination, and this
phenomenon is linked to increased oxidative stress in FH-
deficient cancer cells UOK262 [59].

Malic enzyme

Malic enzyme (ME) catalyzes the oxidative decarboxyl-
ation of malate into pyruvate and CO, (Figure 1A). In
mammalian cells, two NADP"-dependent MEs, the cyto-
solic ME1 and the mitochondrial ME3, and the mitochon-
drial NAD"-dependent ME2 have been described. The
first link between mitochondrial MEs and cancer traces
back to the 1970s, when Lehninger's laboratory observed
that mitochondria isolated from leukemia-derived ascites
cancer cells carried unexpectedly high rates of conversion
of malate into pyruvate [60]. Ten years later, the same lab
suggested that malate metabolism is compartmental-
ized: malate generated from glutamine oxidation in the
mitochondria proceeds through the TCA cycle, whereas
cytosolic malate is converted into pyruvate by the mito-
chondrial ME2. The authors also observed that extra-
mitochondrial malate, after conversion into pyruvate
and then citrate, could fuel fatty acids and cholesterol
biosynthesis, supporting tumor growth [61]. More re-
cent evidence underscored the role of this enzyme in
leukemia cells, where the silencing of ME2 led to dimin-
ished proliferation and increased apoptosis [62]. Interest-
ingly, the expression of ME1 and ME2 has been found to
be regulated by p53 and to tightly control NADPH homeo-
stasis, corroborating the connection between these enzymes
and oncogenic metabolic rewiring [63].

Mitochondrial DNA mutations and cancer

Mitochondria contain a circular chromosome of 16,596
base pairs, coding for 37 genes translated into 13 sub-
units of the respiratory chain and ATPase complexes, 22
tRNAs and 12S and 16S ribosomal RNAs. Mammalian
cells contain thousands of copies of mitochondrial DNA
(mtDNA) [64]. In contrast to nDNA, mtDNA mutations
coexist with normal mtDNA in a heterogeneous mixture
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known as heteroplasmy. Importantly, by varying the
level of heteroplasmy, a single mtDNA mutation might
result in a wide range of bioenergetics defects, from mild
mitochondrial dysfunction to a severe bioenergetic im-
pairment and cell death [65]. Somatic mtDNA mutations
have been found in a wide array of human cancers in-
cluding tumors of colon, breast, lung, prostate, liver,
pancreas, kidney, thyroid and brain as well as in gastric
carcinoma and ovarian cancer [66] and are usually asso-
ciated with bioenergetics defects. Nevertheless, a
complete loss of mtDNA seems detrimental for cancer
cells. For instance, experiments with mtDNA-deficient
cells (p° cells) have clearly shown that cancer cells need
functional mitochondria for their survival and prolifera-
tion [67,68]. A thorough description of mtDNA muta-
tions in cancer has been given in other excellent reviews
(see for instance [66] and [9]). In our review, we will
summarize the most recent findings and propose a uni-
tying theory of the role of mtDNA mutations in cancer.

Complex |

Among mtDNA mutations associated with cancer initi-
ation and progression, those affecting complex I (CI) of
the respiratory chain are the most common. CI, also
known as NADH:ubiquinone oxidoreductase, catalyzes
the transfer of two electrons from NADH to ubiquinone
via flavin mononucleotides, producing NAD' and four
protons, which are pumped in the intermembrane space
(Figure 1B) [11]. CI is the first site of the electron trans-
port chain and active site of reactive oxygen species
(ROS) production. Therefore, mutations in CI can sig-
nificantly alter cell bioenergetics and redox homeostasis
[69]. Mutations in mitochondrial genes encoding for CI
have been linked to the development of colon, thyroid,
pancreas, breast, bladder, and prostate cancer as well as of
head and neck tumors and medulloblastoma (reviewed in
[66]). Furthermore, mtDNA mutations that affect CI have
been linked to increased ROS-dependent metastatic po-
tential in Lewis lung carcinoma and breast cancer cells
[70,71]. The contribution of CI mutations to cancer largely
depends on the corresponding bioenergetics dysfunction
that they cause. In fact, cancer cells affected by severe CI
deficiency exhibited decreased tumorigenic potential both
in vitro and in vivo, if compared to cells with a mild CI
dysfunction [72] and CI activity is required for the in-
duction of aerobic glycolysis in osteosarcoma cells [73].
In line with these finding, a recent study showed that in-
tact CI activity is essential for cancer cell survival at low
glucose levels, a condition commonly found in tumor
microenvironment [74].

Complex Il
Complex III, also known as coenzyme Q:cytochrome ¢ ox-
idoreductase, or cytochrome bcl, catalyzes the electron
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transfer from reduced ubiquinone or coenzyme Q 10 to
cytochrome c¢ followed by the pumping of four protons
into the intermembrane space (Figure 1B). mtDNA mu-
tations that affect CIII have been found in various can-
cers, including colorectal [75], ovarian [76], thyroid
[77], breast [78], and bladder [79] cancers. In support
to an oncogenic function of CIII dysfunctions, it was
demonstrated that the expression of a truncated sub-
unit of CIII in MB49 bladder cancer cells increases cell
growth and invasion both in vitro and in vivo [80].
Interestingly, this oncogenic phenotype was accompan-
ied by lactate secretion, increased ROS production, and
resistance to apoptosis via activation of NF-kB2 path-
way [80]. In line with these findings, the expression of a
mutated form of CYTB in SV40-immortalized human
uroepithelial cells induced an antiapoptotic signaling
cascade that sustained cancer cell growth [81]. To-
gether, these results suggest that mtDNA mutations
that affect CIII activity are sufficient to drive tumori-
genesis via a mechanism that involves ROS production
and the inhibition of apoptosis.

Complex IV

Cytochrome c oxidase, also known as complex IV (CIV)
is the terminal complex of the respiratory chain. CIV is
composed of 12 subunits, of which 3 (I, II, and III) are
encoded by mtDNA and 9 (IV-XIII) by nDNA. CIV re-
ceives four electrons from cytochrome ¢ and reduces
molecular oxygen into water and four protons, which
are pumped in the intermembrane space (Figure 1B).
CIV is the rate-limiting step of respiratory chain and a
well-characterized site of ROS production [82]. The link
between CIV activity and cancer is controversial. Muta-
tions of the mtDNA-encoded CIV subunit 1 (COX1)
have been associated with ovarian cancer [83] and pros-
tate cancer [84]. On the other hand, nDNA-encoded
subunits of CIV are generally upregulated in cancer. For
instance, the overexpression of the antiapoptotic pro-
tein Bcl-2 in leukemia cells increased the mitochondrial
localization of the subunit Va of CIV (cytochrome oxi-
dase (COX) Va) and COX Vb, leading to increased res-
piration and high intracellular ROS [85]. In line with
these findings, the expression of oncogenic Ras in im-
mortalized human bronchial epithelial cells increases
CIV activity and the inhibition of Ras in A549 lung
adenocarcinoma cells reduces COX Vb expression [86].
Finally, hypoxia, an environmental cue experienced by
cancer cells, can also increase CIV efficiency by regulat-
ing the ratio between two CIV subunits (COX4-1 and
COX4-2) in HIF1-dependent fashion [87]. These results
seem to suggest that mtDNA-encoded subunits are gen-
erally tumor-suppressing, whereas nDNA encoded-
subunits are tumor-promoting.
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Complex V

Adenosine triphosphate (ATP) synthase, also known
as complex V (CV), is the final enzyme of oxidative
phosphorylation. CV exploits the electrochemical po-
tential gradient across the inner mitochondrial mem-
brane to generate ATP from ADP and inorganic phosphate
(Figure 1B). Of note, the ATP synthase has recently been
found to be part of the permeability transition pore (PTP)
[88], a membrane-embedded mitochondrial complex in-
volved in several mitochondria-dependent processes, in-
cluding calcium buffering and apoptosis [89]. Mutations in
CV subunits encoded by mtDNA have been found in thy-
roid [77], pancreatic [90], and prostate [84] cancer. To in-
vestigate the oncogenic activity of CV mutations, Shidara
and colleagues introduced two different point mutations
in the mtDNA gene encoding for the CV subunit 6
(MTATP6) [91]. Interestingly, mutant ATP6 increased cell
proliferation in 2D cultures and led to higher oncogenic
potential in xenografts. Importantly, the reintroduction of
a nuclear-encoded wild-type ATP6 suppressed tumor for-
mation in these cells. Several factors could explain the link
between CV mutations and tumorigenesis. For instance,
mutant cells displayed reduced apoptosis, suggesting that
the oncogenic function of mutant ATP6 could involve in-
hibition of programmed cell death, which is consistent
with the role of CV in the regulation of the PTP [88]. Also,
ATP6 mutations were associated with increased ROS pro-
duction, suggesting that, even if the ATP synthase is not
directly involved in the transport of electrons, its inhib-
ition could cause electron leak from the respiratory chain,
inducing ROS generation. In contrast with the link be-
tween low CV and cancer, a recent work showed that a
functional ATP synthase is instead required for cell sur-
vival in the presence of overt dysfunction of oxidative
phosphorylation. Indeed, it was recently found that the
loss of the ATPase inhibitory factor ATPIF1 protected
from antimycin-induced cell death, in a human haploid
cells. Interestingly, it was demonstrated that the ablation
of ATPIF1 is required to allow the reversal of ATP syn-
thase, a process whereby ATP synthase hydrolyses ATP to
maintain a mitochondrial membrane potential [92]. These
observations underscore the plasticity of CV, which can
shape its activity to maintain mitochondrial potential and,
eventually, to support survival.

Conclusions

In this review, we have explored the link between defects in
mitochondrial metabolism, caused by mtDNA or nDNA
mutations, and tumorigenesis. We have also discussed the
hypothesis that mitochondrial dysfunction not only
perturbs cellular bioenergetics, supporting the metabolic
transformation of cancer cell, but that it also triggers
tumor-promoting (epi)genetic changes mediated by the
small molecule metabolites that they release. Given the
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Figure 2 The evolving metabolic landscape of a cell. Schematic representation of the evolutionary process of a cancer cell driven by
metabolic cues. The high bioenergetic flexibility of mitochondria allows cells to adapt to ever-changing environments, acquiring different
metabolic configurations within the metabolic landscape. This metabolic flexibility is achieved by mutations of mtDNA and further shaped by
the degree of heteroplasmy of the mutations itself. According to pre-existing metabolic adaptations (mitochondrial phenotypes) and to nutrient
availability, there might be a selective pressure on the acquisition of genetic mutations that can sustain a certain metabolic configuration (gray
dashed lines). The nDNA mutation is then passed to the progeny. The fixation of a specific metabolic configuration (e.g. aerobic glycolysis)
could then lead to tumorigenic transformation (orange dashed lines) by yet unidentified mechanisms. This scenario could be used to trace the
metabolic evolution of cancer based on an evolving metabolic landscape.

importance of mitochondria in tumorigenesis, it is not
surprising that canonical oncogenes and tumor sup-
pressors exert their functions by regulating mitochon-
drial function [7]. For instance, Trapl [93] and the
endocytic adaptor protein (B-arrestin [94] were shown
to alter SDH expression and activate a succinate-
dependent pseudoxypoxic response in support of their
tumorigenic program. Hence, deregulation of mito-
chondrial function plays a key role not only in tumor
initiation but also during tumor progression, where
secondary mitochondrial dysfunction would enable
cancer cells to adapt to a constantly evolving tumor
microenvironment. In this scenario, however, mtDNA
mutations, by virtue of their tunable bioenergetic out-
come, would represent a more efficient way to adapt to
novel metabolic niches than nDNA mutations. We
propose that nDNA and mtDNA mutations are co-
selected to finely shape the metabolic efficiency of cancer
cell during tumor evolution: mtDNA mutations would en-
able fast and reversible explorations of different metabolic
niches, whereas nDNA mutations would permanently fix
an advantageous metabolic configuration and pass this

information to the daughter cells (Figure 2). Considering
the long-standing evolutionary cooperation between
mitochondria and the host cells, it is not surprising
that their two genomes are hard-wired for cell survival
and proliferation.
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