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Abstract 

Circulating metabolites systemically reflect cellular processes and can modulate the tissue microenvironment in com‑
plex ways, potentially impacting cancer initiation processes. Genetic background increases cancer risk in individuals 
with Lynch syndrome; however, not all carriers develop cancer. Various lifestyle factors can influence Lynch syndrome 
cancer risk, and lifestyle choices actively shape systemic metabolism, with circulating metabolites potentially serving 
as the mechanical link between lifestyle and cancer risk. This study aims to characterize the circulating metabolome 
of Lynch syndrome carriers, shedding light on the energy metabolism status in this cancer predisposition syndrome.

This study consists of a three‑group cross‑sectional analysis to compare the circulating metabolome of cancer‑free 
Lynch syndrome carriers, sporadic colorectal cancer (CRC) patients, and healthy non‑carrier controls. We detected 
elevated levels of circulating cholesterol, lipids, and lipoproteins in LS carriers. Furthermore, we unveiled that Lynch 
syndrome carriers and CRC patients displayed similar alterations compared to healthy non‑carriers in circulating 
amino acid and ketone body profiles. Overall, cancer‑free Lynch syndrome carriers showed a unique circulating 
metabolome landscape.

This study provides valuable insights into the systemic metabolic landscape of Lynch syndrome individuals. The find‑
ings hint at shared metabolic patterns between cancer‑free Lynch syndrome carriers and CRC patients.
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Background
Lynch syndrome (LS) is a hereditary condition caused by 
specific pathogenic mutations in DNA mismatch repair 
(MMR) genes, including MLH1, MSH2, MSH6, or PMS2. 
These mutations impair the cells’ ability to correct errors 
that occur during DNA replication. Individuals with LS 
face a significantly increased lifetime risk of developing 
cancers, with up to a 16-fold higher risk depending on 
the specific MMR gene affected [1, 2]. Colorectal cancer 
(CRC) is the most common cancer with a 52–97% life-
time risk when mutations occur in the MLH1 and MSH2 
genes, 13–19% with mutated MSH6 gene, and 10% with 
mutated PMS2 gene [1, 2]. However, it is worth noting 
that not all individuals with LS develop cancer. The fact 
that some LS carriers remain cancer-free throughout 
their lives shows that cancer risk can be modified. Life-
style factors, such as engaging in regular physical activ-
ity and maintaining a healthy body weight, are associated 
with a reduced cancer risk within the LS population [3].

The circulating metabolome reflects whole-body meta-
bolic processes, which are influenced by genes, lifestyle 
factors, and health status [4–7]. Based on findings that 
adiposity-linked circulating metabolite signature is asso-
ciated with elevated CRC risk [8], while a metabolite pro-
file reflecting a healthy lifestyle is associated with lower 
CRC risk [5, 9] circulating metabolome holds the poten-
tial for characterizing a phenotype susceptible to CRC 
development.

Compelling evidence suggests that some circulating 
metabolites are causally related to cancer development. 
Lipids and amino acids were the most abundant circu-
lating metabolites associated with CRC risk [5, 8–10]. 
Elevated levels of triglycerides, phospholipids, and cho-
lesterol may promote cancer cell growth and prolif-
eration by serving as an energy source and inhibiting 
CD8 + T cell proliferation [11]. Amino acids function as 
building blocks of proteins, precursors of various sign-
aling molecules, and energy sources. Levels of certain 
amino acids, such as Alanine and Histidine, have been 
shown to inversely associate with the cancer stage [10]. In 
addition, Histidine concentration in blood was shown to 
be inversely associated with CRC risk [10]. Furthermore, 
circulating amino acid levels can influence immune cell 
activity, potentially impacting cancer development, 
as amino acids are vital for the basal metabolism of 
immune cells, and activated immune cells require more 
amino acids [12]. Collectively, these findings suggest that 
changes in circulating metabolite levels can precede CRC 
development. However, it remains unexplored whether 
the LS genotype affects the circulating metabolome. 
Therefore, our study investigated the circulating metabo-
lome in cancer-free LS carriers.

In this study, we examined the circulating metabolome 
in a cohort of cancer-free LS carriers. We compared 
their metabolome to a control group of cancer-free non-
carriers, as well as to a group of non-carriers with CRC. 
Our two main findings were that both LS and CRC par-
ticipants exhibited similar patterns in circulating amino 
acids and ketone bodies. Second, we identified altered 
lipid metabolism in LS carriers compared with con-
trols, which may play a role in the regulation of adipos-
ity-related cancer risk. Overall, our study sheds light on 
the shared metabolic signatures of LS carriers, empha-
sizing the potential systemic factors at play in cancer 
susceptibility.

Materials and methods
Sample collection
Samples of three-group cross-sectional analysis were 
collected from different study cohorts; LS (n = 80), CRC 
(n = 89), and control (total n = 103).

LS cohort included registered participants in the Finn-
ish Lynch Syndrome Research Registry (LSRFi), with 
confirmed pathological MMR gene (path_MMR) vari-
ants (classes 4 and 5 by InSiGHT criteria) [13]. Sporadic 
CRC patients were enrolled at the time of their initial 
surgical appointment for CRC at the local tertiary center 
responsible for the management of CRC. Healthy non-
carrier control samples were acquired from the Biobank 
of Eastern Finland (n = 76) and studies of the University 
of Jyväskylä (JYU) (n = 27) [4]. Informed consent was 
obtained from all participants, and ethical approval of 
sample collections was from: the Ethics committees of 
the Helsinki and Uusimaa Health Care District, Central 
Finland Health Care District the University of Jyväskylä. 
The study was conducted according to the guidelines of 
the Declaration of Helsinki.

All samples were taken in a fasted state. However, fast-
ing instructions had slight differences. Control cohort 
participants fasted overnight and had no diet restrictions 
for the previous days. We do not have information about 
the length of the fasting of biobank samples. Samples of 
LS and CRC participants were taken after surveillance 
colonoscopy. According to colonoscopy protocol, LS and 
CRC participants were instructed to avoid eating high-
fiber food (for example, fruit, berries, vegetables, and 
seeds) 2 days before the surveillance visit, to eat only eas-
ily digestible foods (for example yogurt, porridge, potato, 
pasta, fish, and white bread) a day before the surveillance 
visit and to abstain from solid food 12 h and any liquids 
2  h before colonoscopy. From all participants, venous 
blood samples were taken from the antecubital vein to 
standard serum tubes. The samples were aliquoted and 
stored at – 80 °C until analysis.
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Metabolomics analysis
Metabolites were analyzed with a targeted proton nuclear 
magnetic resonance (1H-NMR) spectroscopy platform 
(Nightingale Health Ltd., Helsinki, Finland; biomarker 
quantification version 2020). In this high throughput 1H-
NMR platform identification of small-molecule solutes 
present in native serum, including diverse amino acids 
and glycolysis substrates, is made through spectroscopic 
settings designed to minimize interference from the 
broad spectral signals emanating from lipoprotein parti-
cles. Additionally, the quantification of lipid constituents 
and assessment of the spectrum of fatty acid saturation 
levels was done using serum lipid extracts. The technical 
details of the method have been reported previously [14, 
15]. The platform quantifies 250 metabolite measures. Of 
them, metabolome-wide analyses were conducted with 
171 variables representing lipoproteins and lipids, glyc-
olysis-related metabolites as well as amino acids, ketone 
bodies, and some other metabolites including GlycA, 
which is a measure of global N-acetyl glycosylation. Sev-
enty-nine lipoprotein lipid ratios were omitted from the 
analyses as they mostly provide overlapping information 
with absolute lipid concentrations. For individual metab-
olite analyses, we concentrated on 65 key metabolites 
representing these metabolite groups.

Statistical analysis
Descriptive statistics of each metabolite are reported in 
Supplement Table  S1, and Table  1 shows the statistical 
analyses used in this study.

Results
Descriptive characteristics of study subjects in LS carrier, 
control, and CRC cohorts are presented in Table 2.

Circulating metabolome level results
Cancer‑free LS carriers’ circulating metabolome profile 
showed more similarity with CRC patients’ profile 
than controls
One hundred seventy-one circulating metabolites were 
studied using NMR-based targeted analysis. The dimen-
sion reduction method PCoA and PERMANOVA test 
indicate that circulating metabolite profiles differed 
between the three groups (Fig.  1). Pairwise compari-
sons further showed that the metabolite profiles of all 
three groups were significantly different from each other 
(Fig. 1). In summary, cancer-free LS carriers have a signif-
icantly distinct circulating metabolome landscape when 
compared to healthy noncarrier control or CRC patient 
cohorts.

Path_MMR gene variants show some differences 
in circulating metabolome
Cancer risk in LS is strongly associated with path_
MMR genes, where MLH1 is the most aggressive gene 
to increase cancer risk [1, 2]. MLH1 is also the primary 
mutation found in our Finnish LS cohort [23], which is 
why our path_MMR carrier groups are not equally sized 
(Table 2). These unbalanced group sizes need to be con-
sidered when interpreting the following results. Nev-
ertheless, we considered it important to study whether 
different path_MMR genes have a different effect on 
circulating concentrations of the 171 metabolites and 
performed Euclidean clustering and heatmap visualiza-
tion within the LS cohort (Supplement Figure  S2). No 
apparent clustering was detected based on path_MMR 
genes (Supplement Figure  S2). To study specific differ-
ences between groups carrying each of the path_MMR 
genes we excluded PSM2, since we only had one car-
rier in the cohort. When comparing MLH1, MSH2, and 
MSH6 carrier groups PCoA and PERMANOVA showed 
that these three groups had some differences in circulat-
ing metabolome (p value = 0.032*). However, pairwise 
comparison did not show significant differences between 
different variants (Supplement Figure  S1.). When com-
paring MLH1 variant carrier group to the non-carrier 
cohort, we saw a significant difference, whereas MSH6 
variant carriers did not have a significant difference to 
the non-carrier control group. Conversely, MLH1 car-
riers did not have a significant difference in the CRC 
patient cohort circulating metabolome in PERMANOVA 
analysis, and MSH6 had a significant difference in the 
CRC cohort. In summary, these results suggest that 
MLH1 carriers’ circulating metabolome is more similar 
with CRC patients and MSH6 more similar with healthy 
non-carrier circulating metabolome.

Circulating metabolites‑specific results
Lipoprotein‑ and lipid‑related alterations in LS and CRC 
cohorts compared to controls
ANCOVA or GLiM analysis was employed, with covari-
ates (age, sex, BMI), to examine 65 key metabolites 
(Fig.  2, Supplemental Table  S2). Analyses revealed dis-
tinct metabolic alterations within the LS cohort com-
pared to the control cohort, particularly in relation to 
lipoprotein particles and their lipid content (Fig. 2). The 
mean total cholesterol in the LS cohort and cholesterol 
bound to very low-density lipoprotein (VLDL), low-den-
sity lipoprotein (LDL), or high-density lipoprotein (HDL) 
particles were elevated in LS compared to control; how-
ever, these differences were not statistically significant 
after multiple test correction (Fig. 2).
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Apolipoprotein A1 (ApoA1), a key constituent of 
HDL particles, displayed higher levels in the LS relative 
to the control or CRC cohort. Related to this, the LS 
cohort had higher amounts of total HDL particles but 
when particle sizes were inspected separately, only the 
amount of small-size HDL particles differed compared 
to other cohorts (Fig. 2). Furthermore, the LS compared 
to the control cohort exhibited heightened levels of tri-
glycerides specifically localized within VLDL particles 
(Fig. 2). Elevated concentrations of total cholines, phos-
phatidylcholines, and phosphoglycerides were detected 
in the LS cohort when compared to the control and 

CRC group (Fig.  2). In contrast, the CRC cohort did 
not exhibit any significant alterations in lipoprotein and 
lipid metabolism-related metabolites when compared 
to the control cohort (Fig. 2).

Lipoprotein and lipid levels vary between different path_
MMR carriers
ANCOVA and GLiM analyses, with covariates (age, 
sex, BMI) were used to determine whether differ-
ent path_MMR carriers express different levels of 65 
selected non-redundant key metabolites (Supplemen-
tal Table S3). A finding was that MLH1 carriers had the 

Table 1 The statistical analyses used in this study

Analysis Data type Software/package

Box‑Cox data transformation was performed 
to ensure normally distributed data to fol‑
low up analysis. The Box‑Cox transformation 
with lambda parameter estimated from data 
for each variable separately

Raw data R version 4.0.0 or newer/MASS‑package [16]

Principal coordinate analysis (PCoA) of the Euclid‑
ean distances calculated from circulating 
metabolite values

Box‑Cox transformed data R version 4.0.0 or newer/ape package [17]

PERMANOVA analysis was used to test 
whether cohorts’ centroids/mean in the PCoA 
distance matrix were significantly different 
from each other. Beta‑dispersion (PERMDISP) 
test was used to examine whether the variance 
of cohorts was significantly different. ANOSIM 
test was used to determine whether there 
is more similarity within the cohorts 
than between cohorts

PcoA distance matrix R version 4.0.0 or newer/hagis package [18]

Hierarchical clustering and heat mapping 
the Euclidean distance metric and the complete 
linkage method were used to create clusters 
based on similarity

The raw metabolite data was scaled column‑wise 
to ensure that metabolite expression values were 
comparable across samples

R version 4.0.0 or newer/Pheatmap package [19]

Equality was tested using Levene’s test, and if at 
least one group showed heteroscedasticity, 
the ANCOVA test was replaced with a generalized 
linear model (GLiM)

Box‑Cox transformed data SPSS [20]

ANCOVA analysis, with covariates (age, sex, 
BMI), was used to evaluate whether the means 
of metabolite values were equal or not. The Sidak 
test was employed for multiple test correction 
during pairwise comparisons
ANCOVA was performed on metabolites that had 
equal variances between groups

Box‑Cox transformed data SPSS [20]

A generalized linear model (GLiM) test, 
with covariates (age, sex, BMI), was used to evalu‑
ate whether the means of metabolites values 
are equal or not. The Sidak test was employed 
for multiple test correction during pairwise 
comparisons
GLiM test was performed on metabolites 
that had non‑equal variances between groups

Box‑Cox transformed data SPSS [20]

For data visualization, standardized mean differ‑
ences (SMD) and SMD 95% confidence intervals 
were calculated and visualized in forest plot

Box‑Cox transformed data R version 4.0.0 or newer/MBESS‑package [21], 
ggforestplot‑package [22]
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highest circulating cholesterol levels (mean of total cho-
lesterol, MLH1 = 5.44  mmol/l, MSH2 = 4.81  mmol/l, 
and MSH6 = 4.72  mmol/l) and MLH1 carriers had sig-
nificantly higher cholesterol levels than MSH6 carriers 
(Fig.  3C). Of the cholesterol transportation particles, 

the amounts of very low-density lipoprotein (VLDL) 
(Fig.  3A) and intermediate density lipoprotein (IDL) 
(Fig. 3B), were highest in MLH1-cohort, and significantly 
lower in MSH6-cohort when compared to MLH1-cohort 
(Fig.  3A, B). VLDL and LDL-bound cholesterol levels 
were also highest in the MLH1 cohort (Fig. 3D, E). Addi-
tionally, phospholipids were upregulated in the MLH1 
cohort (Fig.  3F, G, H). In conclusion, the levels of most 
circulating metabolites exhibited similarity among differ-
ent path-MMR carriers (Supplement Table S3). However, 
MLH1 carriers demonstrated higher mean levels of lipo-
protein and lipid-related metabolites when compared to 
MSH6 carriers.

Circulating amino acids and ketone bodies show similarity 
between LS and CRC cohorts
In the LS and CRC cohort, glutamine levels were ele-
vated, whereas all other studied amino acids; alanine, 
histidine, isoleucine, phenylalanine, tyrosine, valine, and 
total branched-chain amino acids (BCAAs) were cur-
tailed compared to the control group (Fig. 2). GlycA lev-
els were higher in LS and CRC cohorts when compared 

Table 2 Descriptive characteristics of study subjects

LS path_MMR carrier currently cancer-free, Control Non-carrier currently cancer-
free, CRC  Non-carrier colorectal cancer patient

Variable LS Control CRC 

N (total = 272) 80 103 89

Sex (N(%))

 Female 42(52.5%) 54 (52.4%) 39(43.8%)

 Male 38(47.5%) 49 (47.6%) 50(56.2%)

 Age, years (mean ± SD) 58.2 ± 13.3 59.7 ± 14.3 70.8 ± 9.6

 Body mass index, kg/m2 (mean ± SD) 26.6 ± 5.5 27.6 ± 6.0 26.7 ± 4.9

path_MMR (N(%))

 MLH1 52(65%) 0 0

 MSH2 13(16.25%) 0 0

 MSH6 14 (17.5%) 0 0

 PMS2 1(1.25%) 0 0

Fig. 1 Principal coordinate analysis (PCoA) of the Euclidean distances calculated from 171 circulating metabolome values. After data 
dimension reduction the difference between cohorts), cancer‑free Lynch syndrome carriers (LS), sporadic colorectal cancer patients (CRC) and 
cancer‑free non‑carrier controls (CTRL), was tested for significance using PERMANOVA on the PcoA distance matrices. PERMDISP test was used 
to test if the variance of cohorts was significantly different or not. ANOSIM test was used to test if there is more similarity within the cohorts 
than between cohorts compared to all cohorts and each cohort paired. The table shows p‑values for PERMANOVA, PERMDISP, and ANOSIM analysis
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Fig. 2 Forest plots illustrate standardized mean differences (SDM) relative to the control cohort, along with their corresponding 95% confidence 
intervals, calculated using box‑cox transformed metabolite values. Significant differences between the control cohort and both LS and CRC 
cohorts are evaluated using ANCOVA or GLiM analysis, incorporating covariates age, sex, and BMI; a colored dot indicates corrected p value < 0.05 
of statistical test compared to control cohort mean value, and a * indicates corrected p value < 0.05 in statistical test between LS and CRC cohort 
means. Test and values for all 65 key metabolites comparisons are shown in Supplementary Table S2
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Fig. 3 Metabolite levels in different path_MMR gene cohorts mmol/l (A–H). ANCOVA (A–H) test, incorporating covariates age, sex, and BMI, 
was used to test the difference between the MLH1 cohort and other path_MMR cohorts, * = corrected p value < 0.05, ** = corrected p value < 0.01. 
Test and values for all 65 key metabolites comparisons are shown in Supplementary Table S3.
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with the control group. However, after multiple test 
corrections, GlcyA levels in the LS cohort were not sig-
nificantly higher (Fig.  2). When examining ketogenesis 
products, both CRC and LS cohorts had altered ketone 
body expression levels compared to the control cohort 
(Fig.  2). In summary, these results revealed that the LS 
cohort shows similarity with CRC cohort regarding cir-
culating amino acids, ketone bodies, and inflammation 
marker GlycA signatures.

Discussion
In this study, we investigated the circulating metabolome 
signature of 80 cancer-free carriers of LS and compared 
it to two distinct groups: a cancer-free non-carrier con-
trol cohort and a cohort of individuals with sporadic 
CRC. Our findings showed that the metabolomic signa-
tures of LS carriers were unique and were statistically 
significantly different from noncarrier control and CRC 
cohort metabolomic signatures. No significant omics-
level differences were found within LS carriers based 
on different path_MMR gene variants. However, our 
individual metabolite level inspections revealed notably 
higher phospholipids levels and other significant altera-
tions related to lipoprotein—and lipid metabolism in 
LS carriers compared to control, which was not evident 
in the CRC-control comparison. Furthermore, we also 
identified within LS cohort differences; that path_MLH1 
carriers showed the highest levels of specific lipid and 
lipoprotein metabolite. Similar alterations in lipopro-
tein- and lipid metabolism were not detected in individu-
als with sporadic CRC. Additionally, both LS and CRC 
cohorts exhibited distinct yet parallel alterations in the 
circulating amino acids and ketone body levels.

The circulating metabolome is associated with can-
cer risk [5, 8, 9]. Germline mutations in DNA repair 
genes elevate cancer risk by imposing a high muta-
tion load on fast-proliferating epithelial tissues. How-
ever, there is a limited understanding of the interaction 
between germline mutations in the DNA repair system 
and systemic metabolomics. DNA repair gene BRCA1 
has been shown to impact cellular metabolism [24, 25]. 
Additionally, women with this breast cancer predispo-
sition gene exhibit an altered circulating metabolome 
signature [26]. In the context of CRC, MLH1 defi-
ciency in the CRC cell model has been found to disrupt 
mitochondrial metabolism [27]. Our findings revealed 
that LS carriers had a significantly altered circulating 
metabolome signature compared to the control cohort. 
Interestingly, this signature had some similarities to the 
circulating metabolome signature observed in sporadic 
CRC patients. These results, together with previous 
findings related to BRCA1 and path_MMR, suggest that 
these cancer-predisposing germline mutations not only 

increase the mutation load in epithelial cells but also 
impact systemic metabolomic status.

The association between cancer risk and lipoprotein 
and lipid levels has been extensively studied, but the 
results remain controversial. A recent systemic meta-
analysis showed that triglycerides and total cholesterol 
positively correlated with CRC incident rate, while 
high levels of HDL cholesterol negatively correlated 
with CRC incidences [28]. This analysis did not show 
an association between LDL cholesterol and CRC risk. 
However, some studies indicate a U-shaped association, 
suggesting that intermediate LDL cholesterol levels are 
related to the lowest cancer risk [29]. In the LS carri-
ers with type two diabetes, triglyceride level was not, 
but cholesterol level was associated with higher CRC 
risk [30]. While there is no clear consensus on whether 
lipoprotein and lipid metabolism are associated with 
CRC risk or not, it is evident that lipoprotein and lipids 
play a critical role as functional molecules in various 
carcinogenesis-related processes. Dysregulation of lipid 
metabolism represents an important metabolic altera-
tion in cancer. Lipoproteins and lipids act as energy 
producers, signaling molecules, and source material 
for the biogenesis of cell membranes [31]. Cholesterol 
is a key component of cell membrane lipid rafts, which 
play a vital role in cancer signaling. It can directly acti-
vate oncogenic signaling pathways [29, 32]. Moreover, 
cholesterol and lipoproteins are essential in triggering 
immune responses [32]. Our findings revealed that in 
comparison to the control cohort, cancer-free carriers 
of LS exhibited not significantly different but consist-
ently higher cholesterol levels and alterations in the 
distribution of cholesterol-transporting lipoprotein 
particles. MLH1 carriers with the highest cancer risk 
had the highest cholesterol levels. The elevated lipopro-
tein and lipid levels in LS carriers could be the response 
to the high levels of immune activity known to be pre-
sent in LS. It is possible that increased lipoprotein and 
lipid levels support immune cell functions, aiding in the 
elimination of premalignant cells. On the other hand, 
elevated levels might also provide growth advantages 
to malignant cells by boosting oncogenic signaling and 
overall cell proliferation. The exact role of elevated lipo-
protein and lipid levels in LS carcinogenesis, whether 
protective or oncogenic, remains to be thoroughly 
investigated in future studies.

Amino acids and ketone bodies have links to cancer 
progression. Amino acids are necessary building blocks 
for cancer cell protein synthesis, and the cancer cell 
ketone body’s metabolism has been shown to be dis-
rupted [33, 34]. Interestingly, the circulating amino acid 
histidine has been found to have an inverse association 
with CRC risk [10]. Alterations in circulating amino acid 
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levels have been reported in many cancers. A decrease in 
circulating amino acids is often suggested to be caused 
by cachexia. However, this may not be the sole reason, as 
similar decreases have been observed in cancer patients 
without weight loss or cachexia [34]. The reduction in 
amino acids could potentially be attributed to the high 
demand for amino acids by cancer cells [34]. Our results 
showed that LS carriers compared to the control group 
exhibited a similar decrease in circulating amino acids. 
This suggests that amino acids might be consumed by 
non-tumorous cells, for example, immune cells, in LS 
carriers.

Ketone bodies serve as an energy source and can be 
involved in various metabolic pathways. Produced in the 
liver, ketone bodies are transported to other tissues when 
needed. Due to impaired ketone metabolism in cancer 
cells, most cancer cells cannot utilize ketone bodies as 
an energy source, and ketone bodies can even impose 
reactive oxygen species production, inhibiting cancer 
cell growth [35]. Thus, ketone bodies possess anti-cancer 
properties [35]. However, the reasons behind LS carriers 
expressing a similar circulating ketone bodies’ profile as 
CRC patients remain unclear.

Inflammation and its biomarkers have been strongly 
associated with cancer risk, progression, and survival [36, 
37]. GlycA, a novel inflammation marker has been linked 
to CRC incidence and mortality [38]. Elevated GlycA lev-
els indicate both acute and chronic inflammation, serving 
as predictive markers for overall mortality. These levels 
remain persistently elevated and stable for an extended 
period, spanning up to a decade [39]. Our results showed 
increased GlycA levels in the CRC cohort, and in addi-
tion to that LS carriers displayed an increase in GlycA 
levels. This rise in GlycA level could be attributed to 
heightened immune activity in LS. However, within our 
current cohort size, the GlycA levels, when compared to 
the control cohort, did not reach statistical significance 
after multiple test corrections. Further investigation is 
warranted to determine if statistical significance can be 
observed with a larger LS cohort.

While our study provides valuable insights, it is impor-
tant to acknowledge certain limitations. The sample size 
of our study, although comprehensive, might still be 
relatively small for detecting subtle differences in cer-
tain metabolomic parameters. A larger and more diverse 
cohort, including a greater representation of MSH2, 
MSH6, and PSM2 carriers, could potentially uncover 
more intricate details regarding how different path_
MMR variants associate with distinct metabolic signa-
tures. Additionally, it is essential to note that our LS and 
CRC cohorts were collected under different setups than 
control. LS and CRC serum samples were obtained prior 
to colonoscopy surveillance, whereas control samples 

originated from both biobank sources and University of 
Jyväskylä (JYU) studies. Although all samples were col-
lected under an overnight fasted state, moderate varia-
tions in fasting instructions (detailed in the materials and 
methods section) could potentially impact metabolite 
levels. One example is the adherence to a low-fiber diet 
2  days prior to colonoscopy. We are not aware of stud-
ies showing the effects of bowel preparation in serum 
metabolomics, thus, it is not clear whether this meth-
odological issue would affect results. However, here we 
would like to raise the observed increase in ketone body 
levels in both LS carriers and CRC patients, which could 
be attributed to the fasting instructions they followed 
before blood sampling. LS and CRC cohorts had wider 
fasting guidelines as they underwent colonoscopy sur-
veillance on the same day as blood collection, possibly 
leading to an upregulation of ketone bodies as a response 
to the energy deficit caused by fasting. However, beyond 
the fasting-related effects, it is also plausible that path_
MMR genes influence overall cell ketone body metabo-
lism, leading to alterations in the circulating ketone body 
levels. These genes might have broader implications for 
the metabolism of ketone bodies in the body. Addition-
ally, it remains unclear whether there are specific sys-
temic-level changes in ketone body consumption that 
could contribute to the observed increase in circulating 
ketone bodies in LS carriers and CRC patients. Further 
investigations are warranted to explore the potential 
interplay between path_MMR genes, systemic ketone 
body metabolism, and their implications in cancer devel-
opment. In summary, while fasting-related factors might 
explain part of the increased ketone body levels in LS 
carriers and CRC patients, the role of path_MMR genes 
and systemic-level ketone body metabolism alterations 
deserves thorough investigation to gain a comprehensive 
understanding of their impact on cancer risk and meta-
bolic processes. Furthermore, the lack of detailed lifestyle 
information for the different cohorts introduces an ele-
ment of uncertainty, as lifestyle factors can significantly 
influence overall metabolite signatures. However, it is 
noteworthy that all cohorts consisted of Finnish individ-
uals, and we have striven to balance the cohorts by sex 
and BMI to mitigate potential confounding effects. It is 
important to acknowledge that the mean age of the CRC 
patient cohort is higher than that of the LS cohort. This 
discrepancy arises from the fact that sporadic CRC inci-
dences are most prevalent in older age groups, making 
it challenging to establish an exact age-matched Finnish 
LS cohort within the same age range. To address this, we 
incorporated age as a covariate in the ANCOVA analysis 
and expanded the control cohort to encompass partici-
pants across the full age spectrum represented by both 
the LS and CRC cohorts.
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The cross-sectional design of our study limits our 
ability to infer causality or the temporal sequence of 
metabolic changes in relation to LS-related cancer 
development. Longitudinal studies tracking metabolic 
alterations over time would provide a more dynamic 
perspective on the interplay between systemic metabo-
lism and cancer risk.

Conclusions
The results demonstrate that the oncogenic stress 
imposed by path_MMR genes is reflected at the sys-
temic metabolomic level. These constitutional altera-
tions in energy metabolism may play a significant role 
in the etiology of LS-related cancers. The findings of 
our study raise several intriguing questions regarding 
the interaction between systemic metabolism and pre-
carcinogenic processes.
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