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Abstract 

Background Endometrial cancer (EMC) is the most common female genital tract malignancy with an increasing 
prevalence in many countries including Japan, a fact that renders early detection and treatment necessary to protect 
health and fertility. Although early detection and treatment are necessary to further improve the prognosis of women 
with endometrial cancer, biomarkers that accurately reflect the pathophysiology of EMC patients are still unclear. 
Therefore, it is clinically critical to identify biomarkers to assess diagnosis and treatment efficacy to facilitate appropri-
ate treatment and development of new therapies for EMC.

Methods In this study, wide-targeted plasma metabolome analysis was performed to identify biomarkers for EMC 
diagnosis and the prediction of treatment responses. The absolute quantification of 628 metabolites in plasma sam-
ples from 142 patients with EMC was performed using ultra-high-performance liquid chromatography with tandem 
mass spectrometry.

Results The concentrations of 111 metabolites increased significantly, while the concentrations of 148 metabolites 
decreased significantly in patients with EMC compared to healthy controls. Specifically, LysoPC and TGs, includ-
ing unsaturated fatty acids, were reduced in patients with stage IA EMC compared to healthy controls, indicating 
that these metabolic profiles could be used as early diagnostic markers of EMC. In contrast, blood levels of amino 
acids such as histidine and tryptophan decreased as the risk of recurrence increased and the stages of EMC advanced. 
Furthermore, a marked increase in total TG and a decrease in specific TGs and free fatty acids including polyunsatu-
rated fatty acids levels were observed in patients with EMC. These results suggest that the polyunsaturated fatty acids 
in patients with EMC are crucial for disease progression.

Conclusions Our data identified specific metabolite profiles that reflect the pathogenesis of EMC and showed 
that these metabolites correlate with the risk of recurrence and disease stage. Analysis of changes in plasma metabo-
lite profiles could be applied for the early diagnosis and monitoring of the course of treatment of EMC patients.
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Background
Endometrial cancer (EMC) is the most common malig-
nancy of the female genital tract in Japan and other 
developed countries [1]. Its incidence in Japan is increas-
ing annually, reaching more than 17,000 cases in 2019 
[2]. EMC is often associated with atypical genital bleed-
ing, so many cases are detected at a relatively early stage. 
According to the 2019 Patient Annual Report of the Japa-
nese Society of Obstetrics and Gynecology (JSOG) of 
12,631 patients with uterine cancer, 7190 (56.9%) were 
diagnosed to be stage IA [3]. The 5-year overall survival 
rate for patients with stage IA EMC was 95.3%, based on 
the 2014 Annual Report on Treatment of JSOG. The basic 
treatment strategy for patients with stage I–III EMC is 
surgery, with or without adjuvant therapy, depending on 
the risk for recurrence evaluated by biopsy of the surgical 
specimen. The treatment guidelines of the Japanese Soci-
ety of Gynecologic Oncology recommend no additional 
postoperative treatment for patients with low-risk recur-
rence, whereas chemotherapy or radiotherapy is recom-
mended as postoperative treatment for patients with 
intermediate- or high-risk recurrence [4]. According to 
the JSOG annual patient report for 2019, 5933 (82.5%) of 
7190 patients with stage IA EMC completed their treat-
ment with surgical therapy alone [3].

Approximately 80% of EMCs are grade 1 or 2 endome-
trioid carcinomas, whose carcinogenesis is associated 
with estrogen exposure, with obesity being one of the 
most significant risk factors for this low-grade subtype 
[5–7]. However, another subtype less associated with 
estrogen, primarily pathologically diagnosed as grade 3 
endometrioid carcinoma, serous, or clear cell carcinoma, 
shows more aggressive clinical behavior and is more com-
mon in the elderly. Recently, according to The Human 
Cancer Genome Atlas, four classifications of EMC have 
been proposed based on the results of genetic analysis: 
polymerase ε (POLE) type (ultramutated), microsatellite 
instability (MSI) type (hypermutated), copy number low 
(CN-L) type (endometrioid-like), and copy number high 
(CN-H) type (serous-like) [8].

Metabolomics is a discipline that involves the com-
prehensive analysis of metabolites. Unlike genomics 
which focuses on the genetic information within the 
cell, metabolomics is influenced by a variety of external 
factors, including age, sex, environmental factors such 
as diet and smoking, and changes in gut microbiota [9, 
10]. Therefore, it is considered the most accurate reflec-
tion of the physiological and pathological changes in an 
individual’s body. Cancer cells undergo an independ-
ent metabolic reprogramming resulting from alterations 
in various metabolic pathways, including the Warburg 
effect and glutaminolysis [11]. Exploiting this property, 
several biomarkers targeting changes in metabolism 

specific to cancer cells have been developed [12–14]. 
However, the metabolite biomarkers in previous reports 
are inconsistent, while no effective biomarkers have yet 
been identified for the early diagnosis or for monitoring 
EMC treatment response.

Extensive metabolome analysis has been performed in 
our previous studies using the  MxP® Quant 500 kit to 
identify novel biomarkers and metabolites as potential 
targets in the diagnosis of epithelial ovarian and cervi-
cal cancer patients and in the prediction of chemother-
apy and radiotherapy sensitivity and prognosis [15, 16]. 
 MxP® Quant 500 kit is an ultra-high-performance liquid 
chromatography-tandem mass spectrometry (UHPLC-
MS/MS) wide-targeted metabolome analysis kit that can 
quantify 628 metabolites with high reproducibility, useful 
for biomarker discovery. The aim of this study is to pro-
file metabolites in the plasma of patients with EMC using 
the  MxP® Quant 500 kit and to identify new biomarkers 
that could be potential targets for diagnosing EMC and 
monitoring disease progression.

Methods
Study design and sample collection
From a total of 142 patients with EMC, 108 had stage I, 
eight had stage II, 12 had stage III, and 14 had stage IV 
EMC. Histological diagnosis revealed 118 cases with 
endometrioid carcinoma, nine with serous carcinoma, 
four with clear cell carcinoma, and 11 with other his-
tological types of carcinoma. In this study, the risk of 
recurrence classification was based on the pathological 
final diagnosis after surgery in 142 patients in the study 
according to the treatment guidelines of the Japan Soci-
ety of Gynecologic Oncology [4]. As a result, 142 patients 
were divided into the following recurrent-risk groups; 
64 with low-risk, 35 with moderate-risk, 42 with high-
risk, and 1 with unknown. In addition, 10 patients were 
relapsed within the study period. Plasma samples were 
collected before the first EMC treatment, as part of a 
clinical biobank project of the Personalized Medicine 
Center of Tohoku University Hospital and stored in the 
clinical biobank of the Advanced Research Center for 
Innovations in Next Generation Medicine (INGEM).

The study was approved by the Ethics Committee of 
the Tohoku University School of Medicine (approval 
number 2017–1-346; approved on August 8, 2017) and 
Tohoku Medical Megabank Organization (ToMMo), 
Tohoku University (approval number 2018–4-059; 
approved on October 24, 2018). All patients provided 
written informed consent before participating in the 
study. The study was conducted in accordance with the 
Declaration of Helsinki. Plasma samples from patients 
with EMC were collected and stored according to the 
ToMMo cohort protocol [17–20]. The plasma samples 
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were aliquoted into storage tubes and stored at − 80  °C 
until analysis.

Materials
Pooled normal human plasma was purchased from Inno-
vative Research (Novi, MI, USA; Lot 26,393) and was 
used for global quality control (gQC). The other chemi-
cals and reagents used are described in previous studies 
[15, 16, 21, 22].

Sample preparation and metabolome analysis
Targeted metabolomic analysis was performed as pre-
viously described [15, 16, 21, 22], using an ACQUITY 
UPLC connected to a triple-quadrupole mass spectrom-
eter (Xevo TQ-XS, Waters Corporation, Milford, MA, 
USA), and a  MxP® Quant 500 kit (Biocrates Life Science 
AG). Plasma samples of 10 µL were used, and sample 
preparation and measurements were performed accord-
ing to the  MxP® Quant 500 kit manual. Metabolite con-
centrations were calculated using exported raw data files 
with the MetIDQ™ version Oxygen software (Biocrates 
Life Science AG).

Statistical analysis
Metabolomic data from EMC patients were compared 
with data from the ToMMo cohort. Samples from the 
ToMMo cohort were selected from samples previ-
ously measured in the ToMMo project and matched to 
the EMC group for age, gender, and body mass index 
(BMI) [23, 24]. To normalize differences in measure-
ments between different batches, we measure four gQC 
samples per batch. Normalization between batches was 
corrected for each metabolite by the ratio of the median 
value of each batch to the median value of all batches. 
After normalization, no differences were found in metab-
olite concentrations of gQC between the ToMMo cohort 
and the EMC group. Multivariate, principal component 
(PCA), and orthogonal partial least squares-discriminant 
(OPLS-DA) analyses were performed using MetaboAna-
lyst 5.0. The two-sided p values and false discovery rate 
(FDR) were calculated using the Wilcoxon rank-sum test 
with Shapiro–Wilk using GraphPad Prism v8 (GraphPad 
Software Inc., San Diego, CA, USA). Analysis of the asso-
ciation between risk of recurrence and metabolites was 
performed by defining low-risk patients as 0, moderate-
risk patients as 1, and high-risk patients as 2. A survival 
curve analysis was performed for metabolites correlated 
with the risk of recurrence by dividing the metabolite 
concentrations into two groups, above and below the 
median, and performing a log-rank test. Differences were 
considered statistically significant at p < 0.05.

Results
Sample information and data normalization
Targeted metabolomics was used to analyze plasma sam-
ples from 142 patients with EMC. The resulting meta-
bolic profile was compared with that of the ToMMo 
cohort (control group, age- and BMI-matched, n = 154), 
generated in the same manner as the EMC data. The 
characteristics of the two groups are summarized in 
Table  1. From a total of 628 metabolites analyzed, 419 
metabolites were analyzed whereas the remaining 209 
were detected in less than 80% of the samples and were 
excluded from further analysis. The mean values and fold 
change for the EMC and cohort groups for 628 metabo-
lites are shown in Table S1.

Comparison of metabolite profiles of patients with EMC 
and healthy controls
PCA revealed a minor whereas OPLS-DA a strong 
separation in the metabolite profiles between patients 
with EMC and healthy controls (Fig. 1A, B). Figure 1B 
illustrates the distinct metabolite profiles of patients 
with EMC and healthy controls. OPLS-DA creates a 
discrimination model based on group information. 
The differences in the levels of each metabolite were 
also evaluated and the results revealed that the levels 
of 111 metabolites were significantly increased while 

Table 1 Characteristics of patients with EMC and healthy 
controls

Patients with EMC Healthy controls p value

Total (n) 142 154

Age (years, 
mean ± SD)

59.29 ± 11.67 59.03 ± 12.31 0.51

BMI (kg/m2, 
mean ± SD)

24.55 ± 4.97 23.71 ± 3.33 0.23

FIGO stage, n (%)

 I 108 (76.06)

 II 8 (5.63)

 III 12 (8.45)

 IV 14 (9.86)

Histopathological type, n (%)

 Endometrioid 118 (83.09)

 Serous 9 (6.34)

 Clear 4 (2.82)

 Others 11 (7.75)

Recurrence risk, n (%)

 Low-risk 64 (45.07)

 Moderate-risk 35 (24.65)

 High-risk 42 (29.58)

 Unknown 1 (0.70)
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those of 148 metabolites significantly decreased in 
patients with EMC compared with those in healthy 
controls (Tables S2, S3).

Subsequently, we compared patients with different 
EMC stages to healthy controls. The PCAs and OPLS-
DA of stage IA patients and healthy controls are shown 
in Fig. 1C and D, whereas those of stage IB–IV patients 
and healthy controls are shown in Fig.  1E and F, 
respectively. In both cases, PCA could provide a slight, 
whereas OPLS-DA a significant separation between 
the two groups.

A heatmap of the top 50 metabolites with signifi-
cantly altered levels in patients with stage IA EMC 
compared with those in healthy controls is shown in 
Fig. 2A. A significant increase in the levels of diglycer-
ide (DG) (18:1_18:3), five triglycerides (TGs), acylcar-
nitine C5–OH (C3–DC–M), C8, C16:1, beta-alanine 
(Ala), and cystine, and a significant decrease in the lev-
els of four sphingomyelins (SMs), 10 phosphatidylcho-
lines (PCs), nine lysophosphatidylcholines (LysoPCs), 
five TGs, three hexosylceramides (HexCers), C18:1, 
C18:2, serotonin, homoarginine (HArg), histidine 
(His), cholesteryl ester (CE) (22:6), docosahexaenoic 
acid (DHA), and beta-aminobutyric acid (BABA) was 
observed. Furthermore, the heatmap of the top 50 
metabolites with significantly altered levels in patients 
with stage IB–IV EMC compared with those in healthy 
controls is shown in Fig. 2B. A significant increase in 
the levels of beta-Ala, cysteine, C5–OH (C3–DC–M), 
C16:1, CE (14:1), and seven TGs were observed as well 
as a significant decrease in the levels of nine LysoPCs, 
11 PCs, five SMs, four TGs, trihexosylceramide (Hex-
3Cer) (d18:1/18:0), HexCer (d18:2/22:0), CE (22:6), 
BABA, citrulline (Cit), ornithine (Orn), HArg, His, 
and tryptophan (Trp).

An exploratory analysis based on a multivariate 
receiver operating characteristic curve was performed 
to assess the sensitivity and specificity of these metab-
olites (Fig.  3A). The area under the curve for the top 
five metabolites which included cystine, SM C26:0, SM 
C26:1, PC C38:1, and C5–OH (C3–DC–M) was 0.997 
(95% confidence intervals ranging between 0.986 and 
1) (Fig. 3B).

Identification of metabolites correlated with recurrence 
risk and stage
Correlation analysis to investigate whether metabolite 
changes in EMCs were related to recurrence risk or stage 
was conducted. The risk of recurrence was categorized 
into three groups: low-risk, intermediate-risk, and high-
risk, whereas the stage was categorized into four groups 
(stages 1–4). The top 25 metabolites correlated with the 
risk of recurrence are shown in Fig.  4A. In the high-
risk group, only cortisol and C18:2 blood levels were 
positively correlated with the recurrence risk, whereas 
the other metabolites, mainly amino acids, were nega-
tively correlated with the risk of recurrence. Similarly, 
among the 25 metabolites, cortisol and ceramide (Cer) 
(d18:1/18:0) were positively correlated with the stage, 
whereas the other metabolites, mainly PCs, exhibited less 
concentrations as the stage increased (Fig. 4B). Survival 
curve analysis was then performed on the 25 metabolites 
that were found to be correlated with the risk of recur-
rence, in order to verify whether they are related to actual 
EMC recurrence. The results showed significant differ-
ences in six metabolites: cortisol, His, Trp, methionine 
(Met), alpha-amino adipic acid (alpha-AAA), and car-
nitine (C0) (Fig. 5). Hazard ratios for relapse were 10.84 
(95% CI 3.122–37.66), 4.630 (1.336–16.05), 4.899 (1.409–
17.03), 11.23 (3.226–39.08), 4.428 (1.280–15.32), and 
4.482 (1.295–15.51), respectively. Kaplan–Meier curves 
for the remaining 19 metabolites are shown in Supple-
mentary Fig. 1.

Discussion
Sensitive biomarkers useful for early diagnosis, disease 
progression, and prognosis of EMC are still unclear. 
In this study, a comparison of metabolite profiles using 
plasma metabolome analysis of 142 EMC and 154 healthy 
control samples revealed that the metabolic profiles of 
EMC patients were significantly elevated for 111 and 
significantly decreased for 148 metabolites compared to 
healthy controls. These metabolites are potential candi-
dates as biomarkers for early diagnosis of EMC. Similar 
results were observed when comparing patients with 
stage IA and stage IB–IV EMC with healthy controls. 
In  specifically, LysoPC and TGs containing unsaturated 

Fig. 1 Multivariate analysis of plasma metabolites of patients with EMC (n = 142) and healthy controls (n = 154). A PCA separation of metabolomes 
of patients with EMC (blue) and healthy controls (green). B OPLS-DA separation of metabolomes of patients with EMC (blue) and healthy controls 
(green). C Multivariate analysis of plasma metabolites of patients with stage IA EMC (n = 85) and healthy controls (n = 154). PCA separation 
of metabolomes of patients with EMC (blue) and healthy controls (green). D OPLS-DA separation of metabolomes of patients with stage IA EMC 
(blue) and healthy controls (green). E Multivariate analysis of plasma metabolites of patients with stage IB-IV EMC (n = 57) and healthy controls 
(n = 154). PCA separation of metabolomes of patients with EMC (blue) and healthy controls (green). F OPLS-DA separation of metabolomes 
of patients with stage IB–IV EMC (blue) and healthy controls (green). Each point in the plot corresponds to one plasma sample

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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fatty acids levels were found to be reduced in patients 
with stage IA EMC, also suggesting that these metabolic 
profiles could be used as diagnostic markers of early-
stage EMC. In contrast, in patients with IB and more 
advanced EMC stages, a decrease in amino acids such 
as His, Trp, and lipids was observed, with changes cor-
related with stage and risk of recurrence, probably asso-
ciated with the progression of EMC. In particular, six 
metabolites (cortisol, His, Trp, Met, alpha-AAA, and C0) 
were found to be significantly involved in EMC relapse, 
suggesting that they are useful predictive markers of 
EMC relapse.

LysoPC has been reported to be implicated in several 
cancer pathologies. Metabolic enzymes phospholipases 
 A1 and  A2 convert PC to LysoPC which is subsequently 
metabolized to lysophosphatidic acid (LPA) by lysophos-
pholipase D (LPD), whose expression is increased in 
cancer cells [25]. LPA is involved in cancer cell survival, 
growth, and metastasis via various LPA receptors [26]. 
The observed marked decrease in plasma LysoPC and 
PC concentrations in patients with EMC may be due to 
increased LPA production in the EMC. In a previous 
study, we reported a similar marked decrease in LysoPC 
and PC levels in the plasma of patients with ovarian and 
cervical cancers [15, 16]. Increased phospholipid metab-
olism is commonly reported in gynecological cancers and 
constitutes a useful biomarker for monitoring the patho-
genesis of these diseases.

Elevated levels of several acylcarnitines in patients 
with EMC, including C5–OH (C3–DC–M), C8, and 
C16:1 were also detected. Acylcarnitines transport fatty 
acids to the mitochondrial membrane to be metabolized 
through β-oxidation and are common in organisms [27]. 
Acylcarnitines during cancer metabolism are responsible 
for supplying fatty acids to cancer cells and may regulate 
energy production [28]. They have also been reported 
to be associated with EMC, as suggested by a study by 
Knific et al. reporting that the ratio of C16 to phosphati-
dylcholine PC ae C40:1 is an important EMC biomarker 
[29]. The authors also reported that the ratio of medium- 
to short-chain ACs was significantly reduced in patients 
with EMC. In accordance with our results, Kozar et  al. 
reported elevated C14:0, C14:1, and C16:1 levels in the 
serum of patients with EMC [30].

Sphingolipids play several roles in the etiology and 
treatment of various cancer types. Ceramide is a com-
plex lipid synthesized from sphingomyelin or palmitoyl-
CoA and serine and plays a central role in sphingolipid 
metabolism [31, 32]. Furthermore, ceramide is converted 
to sphingosine-1-phosphate (S1P), which promotes 
tumor growth and survival [33]. In the present study, 
plasma long-chain SM and HexCer levels are decreased 
in patients with EMC which is supported by the results 
of Knific et al. who reported decreased SMOH C14:1 and 
SMOH C24:1 in the plasma of patients with EMC [29]. 
The enhanced synthetic pathway of S1P promotes cancer 

Fig. 2 Hierarchical clustering of plasma metabolites of healthy controls and patients with A stage IA EMC and B stage IB–IV EMC. Rows represent 
the concentration of each metabolite with a distinct metabolic pattern in patients with EMC and healthy controls. Blue and red bars indicate 
decreased and increased levels in patients with EMC, respectively, relative to healthy controls. The dendrogram on the left was codirected based 
on the metabolite concentration profiles
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cell growth because it promotes cancer cell proliferation, 
and the increase in SM and HexCer could be the result of 
cancer cells requiring sphingolipids to facilitate the syn-
thesis of cellular membranes.

TGs are usually stored in adipocytes and peripheral 
tissues as a major source of energy in the body, and the 
levels of TG and CE in organisms are regulated by lec-
ithin-cholesterol acyltransferase (LCAT) [34, 35]. In 
ovarian cancer, the release of fatty acids from TGs is 
inhibited, while TGs have been reported to be involved 
in cancer cell invasion and metastasis [36, 37]. In the 
present study, we found increased plasma TG levels in 
patients with EMC which is consistent with our previous 
results on epithelial ovarian cancer which was associated 
with increased plasma TG levels [16]. Cheng et  al. per-
formed a lipidome analysis of serum from patients with 
EMC and found a trend towards increased TG levels 

[38]. In general, patients with a higher body mass index 
(BMI) tend to have higher triglyceride levels which are 
elevated in EMC patients, even when compared to simi-
lar BMI controls, suggesting that TG regulation is impor-
tant in EMC [39]. Interestingly, total TGs increased in 
the patients in the EMC group, whereas decreases in 
TG (20:5_34:0), TG (20:5_36:2), TG (22:6_32:1), and TG 
(22:6_34:2) including polyunsaturated fatty acids (PUFA) 
were observed in the same group. TGs are also a source 
of free fatty acids (FFAs). Increased biosynthesis of and 
altered FFA levels are associated with cancer. In cancer 
cells, PUFAs and their downstream metabolites regulate 
various processes, such as cell signaling, neurotrans-
mission, cell growth and protection, and inflammation. 
Cancer cells require unsaturated fatty acids, which affect 
cancer cell growth and survival via stearoyl-CoA desat-
urase-1 upregulation [40]. The decrease in the typical 

Fig. 3 A Receiver operating characteristic curve showing the true vs. the false positive rate for a model based on the top 5 to 100 metabolites, 
used for evaluating the sensitivity and specificity of each metabolite for EMC. The vertical axis of the plot shows sensitivity (true positive rate) 
and the horizontal axis shows 1-specificity (false positive rate). B Metabolites with significant top 5 contributions in the ROC curve. Blue and red bars 
indicate decreased and increased levels in patients with EMC, respectively, relative to healthy controls. C Box plots of metabolites with the top five 
largest contributions in the ROC curve. *P < 0.05 compared with cohort
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DHA and eicosapentaenoic acid (EPA), PUFAs, in the 
group of patients with EMC suggests that the regula-
tion of PUFAs in the blood of patients with EMC is very 
important for their treatment.

To explore the metabolites associated with disease 
prognosis in patients with EMC (Fig.  5), a correlation 
analysis of the metabolite concentrations with the risk of 
recurrence and stage was performed. The results identi-
fied cortisol as a metabolite that is positively correlated 
with both the risk of recurrence and stage. Cortisol is a 
steroid hormone secreted by the adrenal cortex, which is 
essential for humans and has a wide range of effects such 
as promoting gluconeogenesis, protein metabolism, lipid 
metabolism, anti-inflammation, and immunosuppression 
[41]. Cancer development triggers various inflammatory 
responses, and the immunosuppressive effects of cortisol 
may promote immune evasion and acquisition of addi-
tional oncogenic mutations in cancer [42]. Furthermore, 
weight gain and insulin resistance, which have obesity-
promoting and blood-glucose-elevating effects, are also 
associated with an increased risk of various malignan-
cies [43, 44]. Susanna et al. conducted a Mendelian ran-
domized analysis of the relationship between plasma 
cortisol and cancer risk and reported that increased 
plasma cortisol levels may increase the risk of EMC [45]. 
This is consistent with our results, suggesting that high 

blood cortisol levels may be a marker of EMC progres-
sion and prognosis.

Amino acids and their derivatives play important roles 
in many biochemical processes in  vivo and are regu-
lated by metabolic reprogramming in cancer cells, such 
as the Warburg effect [46]. In the present study, cystine 
was significantly increased and His, Trp, Cit, Orn, and 
serotonin were significantly decreased in the plasma of 
patients with EMC compared to healthy controls. Cys-
tine is a source of cysteine, which is transported into cells 
via the xCT antiporter and is involved in the synthesis of 
the antioxidant glutathione [47]. Sendo et al. reported a 
reduced expression of the cysteine transporter xCT, in an 
endometrial cancer cell line [47]. Elevated cystine levels 
in the plasma of patients with EMC result from a reduced 
cellular uptake of cysteine, suggesting that glutathione 
metabolism may be affected in EMC. Both Cit and Orn 
are intermediates of the urea biochemical cycle, which 
controls ammonia and nitric oxide (NO) metabolism reg-
ulation through the production of Arg. NO, which plays a 
major role in oxidative stress and other stress conditions 
such as inflammation and cancer, is produced by mac-
rophages as a result of the inflammatory stimulation of 
inducible nitric oxide synthase [48]. Jacopo et al. reported 
lower serum urea concentrations in patients with EMC, 
indicating a metabolic shift towards suppression of the 
urea cycle pathway and increased NO production [49].

Fig. 4 A Correlation analysis between metabolite concentrations and risk of recurrence of EMCs. Red and blue bars indicate metabolites 
that increase or decrease in correlation with the risk of recurrence, respectively. B Correlation analysis between metabolite concentrations and stage 
of EMCs. The red and blue bars indicate metabolites that increase or decrease in correlation with the stage of EMC, respectively
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The role of Trp metabolism in the prognosis of epi-
thelial ovarian and cervical cancer was elucidated previ-
ously, as indicated by the significantly reduced plasma His 
and Trp levels recorded in these cancers [15, 16]. In the 
tumor microenvironment, indoleamine-2,3-dioxygenase 
(IDO) catabolizes Trp to produce kynurenine, which sup-
presses the immune response of T cells facilitating tumor 
survival [50, 51]. Similar reductions in Trp and its down-
stream serotonin have been observed in the present study 
in the plasma of patients with EMC. Furthermore, His 
and Trp levels were negatively correlated with the risk of 
recurrence and stage, rendering them potential predictive 
markers of disease progression and prognosis of EMC.

Conclusion
In summary, the plasma metabolome analysis of patients 
with EMC and comparisons with healthy controls iden-
tified specific metabolites associated with the patho-
genesis of EMC. These metabolites were also correlated 
with the risk of recurrence and disease stage. However, 
the detailed temporal changes and histological differ-
ences remain unknown and require further validation 
using larger sample sizes. Overall, the results of the pre-
sent study suggest that analysis of changes in the plasma 
metabolome profile could be used for the early diagno-
sis, disease assessment, and monitoring of the course of 
EMC treatment.

Fig. 5 Metabolites associated with relapse in patients with EMC. The Kaplan–Meier survival analysis divided the patients into two groups according 
to the median metabolite concentration and compared the days of recurrence using the log-rank test. The black line shows group 1, the red line 
shows group 2, the vertical axis shows the probability of recurrence, and the horizontal axis shows days of elapse
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