
RESEARCH Open Access

Integration of global metabolomics and
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Abstract

Background: Cholangiocarcioma (CCA) treatment is challenging because most of the patients are diagnosed when
the disease is advanced, and cancer recurrence is the main problem after treatment, leading to low survival rates.
Therefore, our understanding of the mechanism underlying CCA recurrence is essential in order to prevent CCA
recurrence and improve patient outcomes.

Methods: We performed 1H-NMR and UPLC-MS-based metabolomics on the CCA serum. The differential metabolites
were further analyzed using pathway analysis and potential biomarker identification.

Results: At an early stage, the metabolites involved in energy metabolisms, such as pyruvate metabolism, and the TCA
cycle, are downregulated, while most lipids, including TGs, PCs, PEs, and PAs, are upregulated in recurrence patients.
This metabolic feature has been described in cancer stem-like cell (CSC) metabolism. In addition, the CSC markers
CD44v6 and CD44v8-10 are associated with CD36 (a protein involved in lipid uptake) as well as with recurrence-free
survival. We also found that citrate, sarcosine, succinate, creatine, creatinine and pyruvate, and TGs have good
predictive values for CCA recurrence.

Conclusion: Our study demonstrates the possible molecular mechanisms underlying CCA recurrence, and these may
associate with the existence of CSCs. The metabolic change involved in the recurrence pathway might be used to
determine biomarkers for predicting CCA recurrence.
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Background
Cholangiocarcinoma (CCA), also known as bile duct
cancer, is a malignant tumor that originates from the
bile duct epithelium [1]. It has the highest incidence in
Northeast Thailand where there is also a high incidence
of Opisthorchis viverrini (OV) infection, the major risk
factor of CCA development in this region [2]. Because of
this high risk of OV infection, more than 1000 people
are diagnosed with CCA every year at Srinagarind Hos-
pital, Khon Kaen University [3]. CCA is thus a serious
major health problem for people in this area. Surgery is
the only curative treatment for CCA patients, and pa-
tient outcome is much improved when all residual
tumor has been removed [4]. However, a high recur-
rence rate has been reported in CCA patients after sur-
gery despite complete resection of the tumor, leading to
an extremely poor prognosis [5, 6]. There is a substan-
tially lower survival rate in patients with recurrence
compared to those with non-recurrence (median overall
survival 35.7 vs. 19.3 months) [5]. Recently, we reported
the association of CSCs and recurrence with the overex-
pression of putative cancer stem-like cell (CSC) markers.
These have the potential to predict CCA recurrence [7].
However, the mechanism involved in CCA recurrence is
not well understood. Therefore, the study of the mech-
anism underlying CCA recurrence is still essential for
managing disease and improving patient outcomes.
Reprogramming energy metabolism is defined as a

hallmark of cancer development as it is required to
balance energy production in order to support cancer
survival and growth [8]. In cancer cells, oxygen is
present, the glucose uptake rate is significantly in-
creased, and lactate is produced [9]. This is the War-
burg effect which was first noted in 1924 by Otto
Warburg. Besides this, the alteration of other meta-
bolic pathways, such as the lipogenic and amino acid
metabolisms have also been reported to be involved
in tumor progression [10, 11]. Therefore, metabolo-
mics focuses on the analysis of low molecular weight
compounds (metabolites) in biological samples, which
become a powerful approach to uncover the mecha-
nisms of many diseases including various types of
cancer. In particular, it is widely used for biomarker
discovery [12]. Untargeted/global metabolomics refers
to the global detection of low molecular weight
compounds in biological samples, while targeted
metabolomics is the detection of defined groups of
metabolites [13]. Apart from metabolomics, lipidomics
is also important because lipids are biomolecules that
have been reported to be involved in cancer progres-
sion [14]. Therefore, the study of both global metabo-
lomics and lipidomics might be beneficial in
providing comprehensive information on cancer me-
tabolism and also cancer biomarker discovery.

Nowadays, metabolic biomarkers can be used in many
clinical applications for patient assessment, including
diagnosis and prognosis [15–18] as well as the identifica-
tion of relevant biomarkers. The alteration of metabo-
lites shows the potential to discriminate healthy controls
from a patient with pancreatic adenocarcinoma with
high efficacy [19]. In addition, there is evidence that
serum/plasma metabolomics benefit cancer diagnosis
[20–22] and the prognosis of cancer recurrence [23–25].
In this study, global metabolomics and lipidomics were

used to compare CCA serum from patients with and with-
out recurrence using 1H-nuclear magnetic resonance (1H-
NMR) and ultra-performance liquid chromatography-
mass spectrometry (UPLC-MS). The differential metabo-
lites between recurrence and non-recurrence were used
for pathway analysis to explore the mechanism underlying
CCA recurrence. We found that patients with recurrence
have lower levels of metabolites involved in mitochondrial
respiration as well as higher levels of lipids compared with
non-recurrence patients. There is considerable evidence
suggesting that a low activity of mitochondrial respiration,
as well as the induction of lipid uptake, is associated with
the existence of CSCs [26] and has been reported in vari-
ous cancer types including hepatocellular carcinoma
(HCC) [27], melanoma [28], leukemia [29], and glioblast-
oma [30]. Interestingly, this metabolic feature is associated
with CSCs which is an important factor for cancer recur-
rence. Therefore, we hypothesized that the alteration of
metabolites in recurrence patients may be associated with
the existence of CSCs, which lead to a higher risk of recur-
rence. To answer this hypothesis, the expression levels of
putative CSC markers (CD44, CD44 variant 6, CD44 vari-
ant 8–10, and EpCAM), enzymes involved in lipid
metabolism including CD36 (involved in lipid uptake),
ATP citrate lyase (involved in lipid synthesis), and SCD1
(involved in lipid desaturation) were investigated. More-
over, the differential metabolites were further investigated
for their prognostic efficacy for CCA recurrence and
recurrence-free survival in order to identify potential bio-
markers for CCA recurrence.

Methods
Patient sampling and follow-up
This was a retrospective study on OV-associated cholan-
giocarcinoma (CCA) patients who underwent surgery at
Srinagarind Hospital, Khon Kaen University, Khon Kaen,
Thailand, between 2007 and 2016. Pre-operative blood
samples were collected from CCA patients and allowed
to clot at room temperature before being centrifuged at
1000 g at 4°C for 10 min. Then, the serum was carefully
collected into 1.5 mL tubes and stored at −80°C until
analysis. CCA tissues were obtained from patients after
surgery and kept in the Biobank of the Cholangiocarci-
noma Research Institute. The patients were excluded if
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they received either radiotherapy or chemotherapy be-
fore surgery.
Patients were followed up every 3 months in the first

year after surgery, then every 6 months thereafter. Com-
puted tomography (CT)/magnetic resonance imaging
(MRI) was performed to confirm postoperative recurrence
in patients who have symptoms or signs of cancer recur-
rence. Recurrence-free survival (RFS) was measured from
the date of surgery to recurrence or until the last follow-
up in patients without recurrence. All subjects gave their
informed consent for inclusion before they participated in
the study. The study was conducted in accordance with
the Declaration of Helsinki, and the study was approved
by the Human Research Ethics Committee, Khon Kaen
University, Thailand (HE611412).

Sample preparation and acquisition for 1H-NMR
spectroscopy
Prior to the metabolomics analysis, the frozen serum
samples were defrosted at 4°C and mixed. Then, the
samples were centrifuged and 300 μl of supernatant was
gently mixed with 300 μl of serum buffer (0.075 M
Na2HPO4 pH 7.4 in D2O, 4.6 mM TSP, 0.004% NaN3).
This was followed by centrifugation at 10,000 g, 4°C for
10 min. The mixed samples, 550 μl, were transferred into
5 mm NMR tubes (DWK Life Sciences, Germany).
These were kept at 4°C until analysis.

1H-NMR spectra were acquired at 298 K using an
NMR spectrometer at 400 MHz (Bruker, USA). The
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was
employed to obtain spectra (recycle delay-90°-t1-90°-tm-
90°-acquisition) in 64 scans.

NMR spectral processing and statistical analyses
Data processing was performed using an in-house
MATLAB script. Phase and baseline correction were per-
formed in all NMR spectra, and the TSP peak was set as 0
ppm. After peak alignment, the water region was excluded
(δ 4.2–δ 5.2). Pseudo-two-dimensional spectra were
drawn in order to identify all metabolites by statistical
total correlation spectroscopy (STOCSY), which con-
firmed the correlation of each resonance. Additionally, the
resonances were searched against the Human Metabo-
lome Database (HMDB), the ChenomxNMR Suite, and
available literature. The integral area under the peak was
obtained using the in-house MATLAB script. The con-
centration of peak of interest was presented by compari-
son with TSP that added was as an internal standard. The
concentrations of interesting peaks were represented as
median with interquartile range (IQR).

Sample preparation and UPLC-MS analysis
The sample preparation and UPLC-MS analysis were
performed as previously published [31, 32]. In brief, the

frozen serum samples were sorted to the set of 80 in a
rack. Then, the samples were defrosted at 4°C overnight
and transferred into 96-deep-well polypropylene plates
(2 mL, Eppendorf). The plates were sealed and centri-
fuged at 3486 g at 4°C for 10 min. After centrifugation,
any solid debris was removed using a clean pipette tip.
The supernatant (50 μl) was aliquoted into individual
96-well polypropylene plates, and four parts of isopropa-
nol were added for protein precipitation. The 96-well
polypropylene plates were sealed and then mixed at
1400 rpm at 4°C for 2 h. After mixing, the plates were
centrifuged at 3486 g at 4°C for 10 min. 125 μL of super-
natant was aspirated into a new 96-well polypropylene
plate. The supernatant of each sample was also pooled
to create the study reference (SR) sample in order to
perform quality control (QC), which was performed
throughout the analysis in every 10 study samples. In
addition, SR samples were diluted through seven dilution
series and acquired at the beginning and end of the run.
The prepared samples were examined using reversed-

phase ultra-performance liquid chromatography (RP-
UPLC). A 2.1×100 mm BEH C8 column (Waters Corp.,
UK) was used for analysis, and the column temperature
was set at 55°C. Mobile phase A was a mixture of water,
acetonitrile (ACN), isopropanol (IPA) in the proportion
of 50:25:25 with 5 mM ammonium acetate, 0.05% acetic
acid, and 20μM phosphoric acid. Solvent B was a mix-
ture of ACN, IPA in the proportion of 50:50 with 5 mM
ammonium acetate, and 0.05% acetic acid. The RP-
UPLC was coupled with Xevo G2-S QTOF MS (Waters
Corp., UK) via a Z-spray electrospray ionization (ESI)
source for lipidomics analysis. The samples were ac-
quired in both positive and negative ion modes in order
to create the result in both positive and negative data-
sets, respectively.

LC/MS data processing and statistical analyses
After data acquisition, XCMS was used for feature ex-
traction [33]. In addition, the potential run-order effect
elimination and feature filtering were performed using
in-house and open-source scripts [34]. In order to gain
only the features with high accuracy and high precision,
features with the coefficient of variance (CV) in SR sam-
ples less than 20% and features correlated to SR dilution
which showed a Pearson correlation coefficient greater
than 0.8 were retained. After that, the data matrix was
normalized using median fold change normalization.
The data file was subjected to multivariate analysis using
SIMCA 14 software (Umetricas, Sweden). After orthog-
onal partial least square discriminate analysis (OPLS-
DA) was applied, the variables with relevance to the dis-
crimination between recurrence (R) and non-recurrence
(NR) based on a p(corr) cut-off of |0.5|together with var-
iables important in the projection (VIP) score above 1.0

Padthaisong et al. Cancer & Metabolism            (2021) 9:30 Page 3 of 15



were selected. The data was analyzed using the Mann-
Whitney U test in MetaboAnalyst 4.0 software; variables
with a false discovery rate (FDR) adjusted p value less
than 0.05 were selected for further analysis
Subsequently, the significant features were identified

using m/z by matching with online databases (Metline
and HMDB). Then, the structure of the lipids was inves-
tigated using MS/MS fragmentation patterns. The level
of the assignment was grouped based on the previously
published criteria [35]: (1) m/z matched to database, (2)
m/z matched to database and MS/MS fragment matched
to in silico fragmentation pattern, (3) MS/MS fragment
matched to database or literature review, (4) retention
time matched to standard compound, and (5) MS/MS
fragment matched to standard compound.

Antibodies
The antibodies used in this study were mouse monoclo-
nal anti-CD44 (1:100; #ab516728), mouse monoclonal
anti-CD44v6 (1:50; #ab78960), rabbit polyclonal anti-
EpCAM (1:100; #ab71916), rabbit monoclonal anti-
CD36 (1:25; #ab133625), rabbit monoclonal anti-ATP
citrate lyase (1:200; #ab40793), rabbit monoclonal anti-
SCD1 (1:100; #ab236868) and HRP-conjugated rabbit
anti-rat (1:50; #ab6734) antibodies (Abcam, CA), and rat
monoclonal anti-CD44v8-10 antibody (1:50; #LKG-
M001) (Cosmo Bio, JP).

Immunohistochemistry (IHC) and scoring
Two independent punctures from paraffin-embedded
tissues of each patient were used to produce tissue mi-
croarrays (TMA). Tissue sections were de-paraffinized
and rehydrated stepwise of xylene, 100%, 90%, 80%, and
70% ethanol, respectively. Microwave cooking was used
for antigen retrieval with 10-mM sodium citrate; pH 6;
and 0.05% Tween20 for CD36, CD44, and CD44v6,
whereas in the Tris-EDTA, pH 9 was used for ATP-
citrate lyase, SCD1, EpCAM, and CD44v8-10. Endogen-
ous hydrogen peroxide activity and nonspecific binding
were blocked with 0.3% hydrogen peroxide and 10%
skim milk for 30 min. Primary antibody was added and
incubated at room temperature for 1 h, then at 4°C over-
night. After washing, secondary antibody (Dako EnVi-
sion) was added for 1 h, except for CD44v8-10. HRP
conjugated anti-rat was added and left for 3 h. A 3,3-di-
aminobenzidine tetrahydrochloride (DAB) substrate kit
(Vector Laboratories, Inc., Burlingame, CA) was used for
signal development. Sections were then counterstained
with Mayer’s hematoxylin. Dehydration was performed
stepwise of 70%, 80%, 90%, and 100% ethanol and xy-
lene, respectively, and mounted with Permount. Stained
sections were viewed under a light microscope.
The IHC score of each patient was calculated as the

average score from two independent punctures. Staining

frequency and intensity were used for scoring. The per-
centage of positive cancer cells was defined as the fre-
quency with 0%=negative, 1–25%=+1, 26–50%=+2,
and>50%=+3. The intensity was scored as three levels,
weak=1, moderate=2, and strong=3. The range of final
scores was 0–9, determined by multiplying the intensity
with the frequency. IHC score was calculated as a me-
dian value and used as a cut-off point. Patients were
classified as low or high expression groups if the grading
score was lower or equal to or higher than the median,
respectively. For protein having a median value equal to
zero, patients were classified into negative or positive ex-
pression groups if the grading score was equal to or
higher than zero, respectively.

Statistical analysis
The results from global metabolomics and lipidomics
were analyzed using SPSS statistical package version 25
and SIMCA software 14 together with MetaboAnalyst
4.0 software. The differential metabolites were further
analyzed using hierarchical clustering and correlation
heatmap analysis, metabolic pathway analysis, and also
the receiver operator characteristic (ROC) curve using
MetaboAnalyst. For IHC results, the correlation between
proteins was analyzed using correlation heatmap ana-
lysis, MetaboAnalyst. The association between metabolic
levels, protein levels, and RFS was analyzed by Kaplan-
Meier survival analysis and the log-rank test using SPSS.
A p value less than 0.05 was considered as statistically
significant.

Results
Patient characteristics and patient outcomes
A total 102 CCA patients were enrolled in this study,
and we firstly analyzed the association of patient charac-
teristics including age, sex, tumor site, histology type,
and tumor staging (according to the 7th edition of the
American Joint Committee on Cancer (AJCC) Staging
Manual) with clinical outcomes, including recurrence-
free survival (RFS) and overall survival (OS). Our results
indicated that patient outcomes were mostly affected by
the stage of cancer, including primary tumor (T stage)
(RFS; p = 0.021, OS; p < 0.001), lymph node metastasis
(N stage) (OS; p < 0.001), distant metastasis (M stage)
(OS; p < 0.001), and TNM stage (RFS; p = 0.007, OS; p <
0.001) (Fig. S1 and S2). Serum metabolomics were thus
studied according to cancer staging, including early stage
(TNM stage 0-II) and late stage (TNM stages III–IV) to
avoid the effect of T, N, M, and TNM stage on cancer
recurrence.
Serum metabolomics were analyzed separately based

on staging. Among all patients, 91 cases were included
for global metabolomics, with 36 cases (39.6%) from
early stage and 55 cases (60.4%) from late-stage CCA.
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For lipidomics, 101 cases were analyzed, with 42 cases
(41.6%) from early stage and 59 cases (58.4%) from late-
stage CCA. The other patient characteristics for global
metabolomics and lipidomics are summarized in Table
S1 and Table S2, respectively.

Global metabolomics and lipidomics analysis of
recurrence (R) and non-recurrence (NR) in CCA patients
To understand the mechanism underlying CCA recur-
rence, we performed global metabolomics and lipido-
mics using 1H-NMR and UPLC-MS, respectively. For
global metabolomics, 36 cases from early stage (NR =
26, R = 10) and 55 cases from late stage (NR = 37, R =
18) were analyzed using 1H-NMR. A total 29 metabolites
were identified from CCA serum, and the number of
metabolites in the early and late stage did not differ.
Among them, 16 metabolites including leucine, valine,
isoleucine, arginine, glutamate, pyruvate, succinate, cit-
rate, dimethylamine, sarcosine, creatine, creatinine,
phosphorcreatine, choline, glucose, and formate showed
significant differences between the recurrence and non-
recurrence groups in early-stage patients (Table S3 and
Fig. 1A), while no significant differences in metabolites
were found in late-stage patients.
For lipidomics, the metabolic profiles of serum from

CCA patients with and without recurrence were char-
acterized by UPLC-MS in both positive and negative
modes. A total of 42 cases were classified as early
stage (NR = 12, R = 30) and 59 were classified as late
stage (NR = 40, R = 19). In the early stage patients,
32 metabolites were significantly different between pa-
tients with and without recurrence, of which 26 lipid
species were from the positive mode and 6 from the
negative mode. The differential lipid species of pa-
tients with and without recurrence are shown in
Table S4 and Fig. 1B: these include 2 driacylglycerols
(DGs) and 22 triacylglycerols (TGs), 1 phosphatidyl-
choline (PCs), 5 phosphatidylethanolamines (PEs), and
2 phosphatidic acids (PAs). On the other hand, there
were no significant differences in metabolites between
patients with and without recurrence in late-stage
CCA. Therefore, only early-stage CCA samples were
used for further analysis.
A heatmap analysis at the level of differential metabo-

lites in each sample is shown in Fig. 2A, B. The levels of
metabolites are indicated by the degree of color. The re-
sults from global metabolomics indicate that all metabo-
lites were downregulated in recurrence patients compared
with non-recurrence patients (Fig. 2A). For lipidomics,
compared with non-recurrence patients, most of the lipid
species were upregulated in recurrence patients, including
TG, PC, PE, and PA, while the level of DG was downregu-
lated in recurrence patients (Fig. 2B).

The correlation heatmap with a hierarchical clustering of
all significant metabolites is shown in Fig. 3A, B. The magni-
tude of the correlation of metabolites is shown by color. Glo-
bal metabolomics showed that most of the metabolites have
a positive relationship to the others (Fig. 3A). The results
from lipidomics showed that most of identified lipids have a
good correlation to others (Fig. 3B).

Pathway analysis of differential metabolites
The metabolic pathway relevant to the differential metab-
olites between recurrence and non-recurrence in both glo-
bal metabolomics and lipidomics were examined using
pathway analysis by MetaboAnalyst 4.0. This analysis is
based on pathway enrichment and topology analysis. The
results from global metabolomics revealed that the differ-
ential metabolites were mostly involved in 7 pathways of
which pyruvate metabolism, alanine-aspartate-glutamate
metabolism, the citrate cycle (TCA cycle), arginine and
proline metabolism, and glycolysis/gluconeogenesis were
considered as the most relevant pathways involved in
CCA recurrence according to their impact values (Fig. 4A
and Table 1). In addition, pathway analysis on the differ-
ential lipid species demonstrated that glycerophospholipid
metabolism, glycerolipid metabolism, and glycosylpho-
sphatidylinositol (GPI)-anchor biosynthesis were the rele-
vant pathways for CCA recurrence (Fig. 4B and Table 2).
A schematic diagram of the metabolic networks involved
in CCA recurrence is presented in Fig. 4C.

Evaluation of protein expression by
immunohistochemistry (IHC)
We explored the association between the alteration of
metabolites and the existence of CSCs which may lead
to CCA recurrence. The expression levels of putative
CSC markers (CD44, CD44 variant 6, CD44 variant 8-
10, and EpCAM), CD36, ATP citrate lyase, and SCD1
were examined. The association of these proteins in each
pathway is shown in Fig. 4C. The results from IHC indi-
cate that the expression level of CD36 was significantly
associated with the expression level of the CSC markers,
CD44, CD44v6, and CD44v8-10 (Fig. 5A and Table S5).
Moreover, CCA patients with high levels of CD36,
CD44v6, and CD44v8-10 have significantly shorter
recurrence-free survival than those with low expressions
(Fig. 5B).

Predictive performance of biomarkers on recurrence
We found alterations in the levels of metabolites associ-
ated with CCA recurrence. Thus, these metabolic changes
may be used as biomarkers for CCA recurrence. In order
to evaluate the predictive value of individual metabolites,
we performed ROC analysis in all significant differential
metabolites. The result from global metabolomics showed
that 6 metabolites (citrate, sarcosine, succinate, creatine,
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creatinine, and pyruvate) have a predictive efficacy on
CCA recurrence (p < 0.05) with the area under curve
analysis (AUC) > 0.7 (Fig. 6A). For lipidomics, we
found 28 lipid species that showed a predictive effi-
cacy on CCA recurrence (p < 0.05). Among these 28
lipid species, the top 10 lipid species had the highest
AUC (AUC > 0.8) (Fig. 6B).

Kaplan-Meier analysis of metabolites on recurrence-free
survival
In order to evaluate the prognostic performance of me-
tabolites on a patient’s outcome, recurrence-free survival
analysis was performed on the potential metabolite bio-
markers. Based on Youden’s index (Youden’s index =
sensitivity + specificity - 1), the max value was used as a

Fig. 1 The Box and Whisker plot shows the different metabolic profiles between recurrence and non-recurrence patients. A The significant differential
metabolites from global metabolomics. B The significant differential lipid species from lipidomics. NR non-recurrence, R recurrence, DG driacylglycerol,
TG triacylglycerol, PC phosphatidylcholine, PA phosphatidic acid, PE phosphatidylethanolamine
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Fig. 2 Heatmap analysis at the level of differential metabolites between recurrence and non-recurrence.A The result from global metabolomics. B
The result from lipidomics. The row represents metabolites, and the column represents individual samples. The color bars on the top right of the
heatmap indicate the level of metabolites with red and blue representing the highest and lowest levels, respectively. NR non-recurrence, R
recurrence, DG driacylglycerol, TG triacylglycerol, PC phosphatidylcholine, PA phosphatidic acid, PE phosphatidylethanolamine

Fig. 3 The correlation heatmap with a hierarchical clustering of all differential metabolites between recurrence and non-recurrence. A The result from global
metabolomics.B The result from lipidomics. The magnitude of the correlation between the metabolites is shown with red representing a positive correlation
and blue a negative correlation. DG driacylglycerol, TG triacylglycerol, PC phosphatidylcholine, PA phosphatidic acid, PE phosphatidylethanolamine
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Fig. 4 The summary of pathway analysis on differential metabolites between recurrence and non-recurrence, analyzed using MetaboAnalyst 4.0.
A Metabolism pathway analysis from global metabolomics. B Metabolism pathway analysis from lipidomics. The color of the circle represents the
p value, and the size of the circle represents the pathway impact. C The schematic diagram of metabolic pathways involved in CCA recurrence
with red arrows indicating the most relevant pathway for recurrence. FAO fatty acid oxidation, CSC cancer stem cell, TG triacylglycerol, NEAAs
non-essential amino acids, CD36 cluster of differentiation 36, ACLY ATP citrate lyase, SCD1 stearoyl-CoA desaturase-1
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cut-off for low and high levels. The results show that 6
metabolites from global metabolomics have a prognostic
effect on CCA recurrence. It was revealed that patients
with low levels of citrate, sarcosine, succinate, creatine,
creatinine, and pyruvate have a significantly shorter
recurrence-free survival than those with high levels
(Fig. 7A). In addition, recurrence-free survival based
on lipid biomarkers was also analyzed. The results
demonstrated that patients with high levels of TGs
have significantly lower recurrence-free survival com-
pared with those patients with low levels (Fig. 7B).

Discussion
Achieving long-term survival for CCA patients after
treatment is the major challenge clinical because many
patients develop recurrence after surgery, leading to the
low survival rates [5, 36–38]. Therefore, the prevention
of cancer recurrence is the major clinical focus following
surgery. There is substantial evidence demonstrating the
role of prognostic markers such as tumor size, tumor
number, and metastasis status on CCA recurrence, and
these have been suggested as prognostic markers for
CCA recurrence [5, 6, 38, 39]. In this study, we also
found that T and TNM stages have the potential as

prognostic markers for recurrence-free survival. How-
ever, an understanding of the molecular mechanisms in-
volved in CCA recurrence, as well as the identification
of effective molecular biomarkers, is still needed to help
manage the progression of cancer. Moreover, molecular
biomarkers could be developed as a drug target for the
prevention of CCA recurrence.
The mechanisms underlying cancer recurrence have

been reported for many cancers. These are mostly asso-
ciated with a subpopulation of cancer cells that are re-
sistant to therapeutics and are called cancer stem-like
cells (CSC) [40–42]. Our previous report found an asso-
ciation between CSC markers with CCA recurrence,
suggesting that CCA recurrence may be associated with
CSCs [7]. In addition, reprogramming of metabolism is
known as the hallmark of cancer [43], and such meta-
bolic changes have also been reported in CSCs [26].
Based on this background, we used high-throughput
metabolomics technology integrating global metabolo-
mics and lipidomics approaches to reveal the deferential
metabolites on CCA patients with and without recur-
rence. This will benefit our understanding of the recur-
rence process and potentially identify effective
biomarkers for CCA recurrence. From our study, we

Table 1 Pathway analysis of differential metabolites from global metabolomics

Pathways Hits Raw p Holm adjust FDR Impact

Pyruvate metabolism 1 0.047 0.901 0.083 0.207

Alanine, aspartate and glutamate metabolism 4 0.029 0.668 0.083 0.197

Citrate cycle (TCA cycle) 3 0.016 0.389 0.083 0.169

Arginine and proline metabolism 5 0.043 0.901 0.083 0.156

Glycolysis/gluconeogenesis 1 0.047 0.901 0.083 0.100

Glycine, serine, and threonine metabolism 4 0.044 0.901 0.083 0.093

Glyoxylate and dicarboxylate metabolism 4 0.022 0.524 0.083 0.032

Propanoate metabolism 1 0.032 0.711 0.083 0

Cysteine and methionine metabolism 1 0.047 0.901 0.083 0

Tyrosine metabolism 1 0.047 0.901 0.083 0

Butanoate metabolism 2 0.050 0.901 0.083 0

Hits matched metabolites in the pathway, raw p original p value calculated from enrichment analysis, Holm adjust adjust p value from Bonferroni method, FDR
false discovery rate, Impact pathway impact calculated from topology analysis

Table 2 Pathway analysis of differential metabolites from lipidomics

Pathways Hits Raw p Holm adjust FDR Impact

Glycerophospholipid metabolism 2 0.0009 0.005 0.003 0.199

Glycerolipid metabolism 1 0.0301 0.030 0.030 0.014

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 1 0.0008 0.005 0.003 0.004

Arachidonic acid metabolism 1 0.0060 0.024 0.007 0

Linoleic acid metabolism 1 0.0060 0.024 0.007 0

Alpha-Linolenic acid metabolism 1 0.0060 0.024 0.007 0

Hits matched metabolites in pathway, Raw p original p value calculated from enrichment analysis, Holm adjust adjust p value from Bonferroni method, FDR false
discovery rate, Impact pathway impact calculated from topology analysis
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found that early-stage CCA patients with and without
recurrence have different metabolic profiles, while this
was not found in the late-stage group. This is consistent
with our previous study which found that molecular bio-
markers have the potential to predict CCA recurrence
only in early-stage patients [7]. After pathway analysis
was performed, the result from global metabolomics re-
vealed that the differential metabolites between recur-
rence and non-recurrence are mostly involved in energy
and amino acid metabolisms. We found that recurrence
patients have a high activity of glycolysis and pyruvate
metabolism, which are represented by low levels of glu-
cose and pyruvate, together with a low activity of the
TCA cycle represented by low levels of citrate and suc-
cinate. There have been evidences that the CSCs are in-
volved in cancer recurrence and tend to use glycolysis
instead of the TCA cycle which is coupled with oxidative
phosphorylation (OXPHOS) to maintain stemness and
survival as it can minimize reactive oxygen species
(ROS) production and induce detoxification systems [27,
44, 45]. Thus, our result leads us to focus on the metab-
olism of CSCs which may lead to CCA recurrence.
Amino acids are the building blocks for protein syn-

thesis. It has been reported that amino acids are the
major biomass in proliferating mammalian cells [46].
Unlike other organisms, mammalian cells cannot
synthesize all of the necessary amino acids, some of
which, called essential amino acids (EAA) which must
be acquired from the diet [47]. On the other hand, the
synthesis of other nonessential amino acids (NEAA) is
mostly associated with glutamine, which is further con-
verted to glutamate via a deamination reaction modu-
lated by the glutaminase (GLS) [48]. This leads to the
biosynthesis of other NEAAs such as proline, aspartate,
asparagine, and alanine [47]. In the proliferating state,
the synthesis of macromolecules is needed for construct-
ing new cells [49]. There is evidence that proliferating
cells use more glutamate for NEAA synthesis, while qui-
escent cells show low levels of glutamine consumption,
indicating low levels of NEAA synthesis [50]. Proliferat-
ing cells need more NEAA production to support bio-
synthesis. Unlike proliferating cells, slow-cycling or

Fig. 5 The correlation between CSC markers and proteins involved in
lipid metabolism and their importance in the patient’s outcome. A The
correlation heatmap with a hierarchical clustering of the levels of CSC
markers and proteins involved in lipid metabolism. The magnitude of
the correlation is shown by the colors with red representing a positive
correlation and blue a negative correlation. B Kaplan-Meier curves
representing the correlation between protein expression and
recurrence. Low represents a low protein expression, high represents a
high protein expression. CD cluster of differentiation, EpCAM epithelial
cell adhesion molecule, ACLY ATP citrate lyase, SCD1 stearoyl-CoA
desaturase-1. A p value lower than 0.05 was considered as a
significant value
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Fig. 6 ROC curve analysis on differential metabolites between recurrence and non-recurrence. A The potential metabolic biomarkers from the
global metabolomics result. B The potential metabolic biomarkers from the lipidomics result. The area under the curve (AUC), sensitivity, and
specificity at the optimal cut-off derived by Youden’s index. TG triacylglycerol
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Fig. 7 (See legend on next page.)
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quiescent CSCs are known as the suppopulation of can-
cer cells with stem-like properties; an important prop-
erty that leads to drug resistance [51]. In our study, we
found differential metabolites mostly associated with
NEAA metabolism pathways, which include alanine, as-
partate and glutamate metabolism, and arginine and
proline metabolisms. Moreover, recurrence patients also
showed low levels of metabolites involved in these path-
ways. Therefore, our results suggest that recurrence pa-
tients may have a higher population of quiescent CSCs,
leading to a higher risk of recurrence.
Besides the alteration in metabolism-related to glucose

and amino acids, the alteration of lipid metabolism is also
important for many cancers. In fact, lipids are biomole-
cules that are essential for many cellular processes, includ-
ing cell proliferation, signal transduction, and energy
storage [52]. Lipidomics thus becomes a powerful tool for
studying lipid profiles in cancer. In ovarian cancer, the
lipid profile could discriminate between patients with and
without recurrence, and thirty-one lipid species could be
used as potential biomarkers for tumor recurrence [17].
The association between lipids and recurrence was also
found in prostate cancer, with a high level of serum tri-
glycerides associated with a high risk of prostate cancer
recurrence [53]. There is also evidence showing the asso-
ciation between lipid metabolism and cancer recurrence.
Therefore, we further hypothesized that an alteration of
lipid metabolism may also be associated with the existence
of CSCs leading to CCA recurrence. In CSCs, the alter-
ation of lipid metabolism is also important for maintaining
survival and stemness. The fatty acid oxidation (FAO)
pathway to produce energy from lipids plays an important
role in energy production in CSCs [26]. FAO is elevated in
breast cancer stem cell (BCSCs), which is required for
self-renewal and chemoresistance [54]. In hepatocellular
carcinoma (HCC), NANOG, a well-known stem cell
marker, suppresses OXPHOS and mitochondrial ROS
production as well as activating FAO in order to support
CSCs properties including self-renewal, tumorigenesis,
and chemoresistance [27]. In addition, CSCs have higher
lipid droplets (LDs) when compared with cancer cells.
This is important for CSCs during metabolic stress be-
cause it sustains free fatty acids for ATP production via
FAO and protects lipid peroxidation, a process producing
lipid peroxides that can cause cell death [26]. In our study,
we found that many lipid species, especially TGs, were up-
regulated in recurrence patients, suggesting that lipids are
important for cancer cells to develop recurrence. To

further investigate whether high levels of lipids in CCA re-
currence are associated with the existence of CSCs, the ex-
pression of proteins involved in lipid metabolism and CSC
markers was investigated. CD36 is known as a transmem-
brane glycoprotein and is expressed in various tumor
types [55]. CD36 plays a critical role in cancer progression,
including cancer proliferation and metastasis [56], and it
is also associated with poor survival of cancer patients
[57]. In CSCs, the elevated expression of CD36 was found
and the uptake of an oxidized phospholipid, the ligand of
CD36 drives glioma CSC proliferation, suggesting that the
expression of CD36 is associated with CSC progression
[30]. Similar to our finding that showed high expression of
CD36, a protein involved in lipid uptake, was associated
with a high expression of CSC markers. Moreover, the
high level of CD36 was associated with lower recurrence-
free survival, suggesting that high levels of lipid in recur-
rence patients may lead to high lipid uptake which bene-
fits CSC survival and leads to CCA recurrence.
Reprogramming of metabolism is associated with cancer

recurrence. Therefore, metabolomics-based biomarker
discovery is widely used to discover biomarkers to predict
cancer recurrence. In ovarian cancer, metabolic bio-
markers showed the potential to predict recurrence with a
high value of AUC [15, 58]. In good agreement with this
report, we found that metabolic biomarkers have the po-
tential to predict CCA recurrence, as evidenced by the
high values of ACU, sensitivity, and specificity. Moreover,
the association of potential metabolic biomarkers was fur-
ther analyzed with respect to recurrence-free survival
time. Our results showed that metabolic biomarkers have
the potential to predict CCA recurrence. Taken together,
our results hence highlight the important of metabolomics
for reveals the molecular mechanisms of CCA recurrence
and the potential biomarkers for the recurrence in early-
stage cholangiocarcinoma.

Conclusions
These findings reveal an alteration of the metabolic pro-
file associated with recurrence. These metabolic changes
may be associated with the existence of CSCs that lead
to CCA recurrence. Moreover, the alteration of metabo-
lites was shown to provide potential biomarkers for
CCA recurrence. Therefore, the differential metabolites
between patients with and without recurrence demon-
strate, in the current exploratory study, the promising
biomarker panel for CCA recurrence despite the larger
cohort validation that remains to be elucidated.

(See figure on previous page.)
Fig. 7 Kaplan-Meier curves represent the correlation between metabolic levels and recurrence. A The result of potential metabolic biomarkers
from global metabolomics. B The result of potential metabolic biomarkers from lipidomics. Low represents the level of metabolite lower than the
optimal cut-off, high represents the level of metabolite higher than or equal to the optimal cut-off. TG triacylglycerol. A p value lower than 0.05
was considered as a significantly value
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