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Abstract

Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired
genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard
chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those
with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to
metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency
on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen
species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and
their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent
studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and
metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing
chemotherapeutic regimens.
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Background
Acute myeloid leukemias (AML) are a group of
hematological cancers that involve clonal proliferation of
immature myeloid progenitor cells in the bone marrow
and peripheral blood. These myeloblasts tend to be in-
tensely proliferative, even to the extent that they can
compromise normal blood flow. Proliferation of the my-
eloblasts generates a bulk of largely non-functional cells,
compromising hematopoiesis, leading to neutropenia
and increasing vulnerability to infectious disease. AML
is one of the most common leukemias to affect adults (~
120,000 new cases per year worldwide) and is also one
of the most lethal. Left untreated, most forms of AML
are aggressive and patients can succumb to disease in
weeks to a few months [1].
The most common chemotherapy treatment for AML

is called induction and consolidation. The first stage,

remission induction, is intended to reduce the bulk of
the myeloblasts. Induction involves high doses of cytara-
bine, a nucleoside analog that compromises DNA repli-
cation, with an anthracycline antibiotic such as
daunorubicin. The induction phase usually lasts for 7
days. After remission has been triggered, treatment
moves into the consolidation stage. This step typically
involves several 3-day courses of cytarabine, but can also
involve hematopoietic stem cell transplantation [2]. Al-
though the precise anti-cancer mechanism of the com-
bination of cytarabine and anthracyclines is still poorly
understood, they are believed to function by inflicting
DNA damage, which leads to mitochondrial dysfunction
and apoptosis [3]. The length of these courses has led to
this treatment often being referred to as “7+3” induction
and consolidation.
Although induction and consolidation is one of the

most effective treatments currently available for AML, it
is very hard on patients. This renders the treatment
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inappropriate for many older patients (65 years or older,
who comprise more than half of all newly diagnosed pa-
tients), especially those with other contra-indicators, like
secondary disease, adverse genotypes, or treatment-
resistant cancers [4]. Although there are several options
for these patients, including low-dose induction therapy
or more targeted treatments, which will be discussed
below, most of these treatments are associated with a re-
duced likelihood of remission (and shorter survival)
compared with aggressive chemotherapy. For a large
number of patients, only palliative care is available [4].
Problematically, the risk of relapse is high in AML;
about one-third of patients who receive even intensive
chemotherapy suffer relapse [4].
Despite limited treatment options, virtually no new

treatments were approved for AML in the period be-
tween 1971 and 2017 [5]. New treatments have been re-
leased since, such as a liposomal combination of
cytarabine and daunorubicin known as CPX-351, the
isocitrate dehydrogenase inhibitor ivosidenib, the tyro-
sine kinase inhibitor gilteritinib, the sonic hedgehog in-
hibitor glasdegib, or the Bcl-2 inhibitor venetoclax [6, 7].
Many of these newer treatments target metabolic differ-
ences in tumor cells that will be discussed below.
In this review, we discuss studies that explore mito-

chondrial characteristics of AML myeloblasts and stem
cells, in comparison with their normal counterparts, in-
cluding alterations in metabolism and signaling, mito-
chondrial respiration, ROS generation and sensitivity,
mitochondrial “priming”, and mitophagy. Also, we de-
scribe various groups of mitocans—mitochondria-target-
ing chemotherapeutics—and their effects with regard to
biology of AML cells. Finally, this review provides recent
evidence on synergistic drug combinations based on
mitocans targeting diverse metabolic pathways that have
shown promising results by in vitro, in vivo studies, and
clinical trials in AML patients.

Metabolic differences in LSCs
If curing AML was as simple as clearing the rapidly div-
iding, highly proliferative myeloblasts, treatment would
be onerous, but straightforward. Unfortunately, it is not
so simple as this. Most patients have a second popula-
tion of leukemic cells known as leukemic stem cells
(LSCs). LSCs share many characteristics with normal
hematopoietic stem cells (HSCs), including being CD38+

CD34−, although LSCs often express other membrane
markers that are absent from HSCs (however, the ex-
pression of these markers seems to vary among patients)
[8]. Like HSCs (and unlike AML myeloblasts), LSCs div-
ide slowly, making conventional anti-proliferative treat-
ments less effective on them. LSCs also provide a
reservoir for the re-emergence of the rapidly dividing
myeloblasts and are the most common driving force for

relapse and treatment resistance, which occurs in about
half of all patients who can be treated with aggressive
chemotherapy regimens and more than 80% of patients
who cannot. Transfer of LSCs to a naïve host can recap-
itulate the onset of AML [9–12].
Many studies have reported a unique metabolic signa-

ture in AML cells [13]. Metabolic reprogramming in
leukemic cells transcends the conventional Warburg ef-
fect [14], and includes increased glycolysis and elevated
ROS levels possibly regulated by PI3K/AKT and mTOR
pathways [15, 16]. Correspondingly, a higher level of
anabolic pathway precursors, such as intermediates of
the citric acid cycle (CAC) and the pentose phosphate
pathway (PPP), have been found in AML [14]. High bio-
synthetic pathway activity is required for the production
of the materials essential for cell growth and prolifera-
tion. Glutaminolysis is upregulated, and catabolism of
this amino acid is a valuable source of both carbon and
nitrogen [14]. Glutaminolysis also regulates OxPhos
(oxidative phosphorylation) in AML through the pro-
duction of NADH [14]. However, dysregulation of anti-
oxidants has been found in AML, which potentially
promotes leukemogenesis by increasing ROS level [17–
19]. Altered lipid metabolism promotes the interaction
of AML with bystanding cells, such as adipocytes, acti-
vates their lipolysis, and transfers lipids from adipocytes
to myeloblasts [20]. Leukemic cells also tend to upregu-
late fatty acid oxidation via mitochondrial uncoupling
[21]. Mutations in cytosolic and mitochondrial isocitrate
dehydrogenases (IDH1 and IDH2), resulting in the pro-
duction of the oncometabolite 2-hydroxyglutarate, are
commonly seen in AML cells, and are frequently tar-
geted for therapy, since they limit cellular differentiation
and promote leukemogenesis [22, 23].
Part of the difficulty in treating AML is the pro-

found metabolic differences in LSCs [24]. To a first
approximation, LSCs retain much of the metabolic
profile of healthy HSCs. In addition to dividing more
slowly (making them more resistant to nucleoside an-
alogs that disrupt DNA replication), LSCs rely upon
oxidative phosphorylation (OxPhos) for ATP gener-
ation instead of glycolysis and lactic acid fermentation
(the route most tumors use to obtain ATP). This
does leave them vulnerable to the production of ROS,
which can force cells out of quiescence and trigger
programmed cell death pathways. Most ROS are gen-
erated in mitochondria via electron transport. LSCs
respond to this threat by upregulating autophagy
(which is critical for the maintenance of stemness and
the elimination of damaged mitochondria that will
produce excess ROS) and upregulate the expression
of the hypoxic response transcription factor HIF-1α,
even in normoxia, to further limit ROS production
[25, 26]. Interestingly, LSCs tend to be metabolically
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inflexible and rely heavily on fatty acid oxidation and
glutaminolysis to maintain OxPhos [27, 28].

Glycolytic disruptions in AML blasts and LSCs
As noted above, myeloblasts have high glycolytic activity
and its anabolic diversions, most importantly the
pentose-phosphate pathway, to provide nucleotides,
amino acids, and electron carriers, e.g., building blocks
that are necessary for rapid proliferation of leukemia
cells [29]. The first step of glycolysis, the conversion of
glucose to glucose-6-phosphate, is catalyzed by hexoki-
nases. Hexokinase II, the most common version of the
enzyme in insulin-sensitive tissues, is a key player in
controlling metabolic flux through this pathway. Unsur-
prisingly, it is also frequently upregulated in cancer cells
(reviewed in [30, 31]). One potential method to target
hexokinase is to use 3-bromopyruvic acid or 2-deoxy-D-
glucose (2-DG), both of which inhibit glucose metabol-
ism [32, 33]. Although targeting hexokinase with 2-DG
alone is generally ineffective, it can sensitize AML cells
to other drugs that affect mitochondria, including cytar-
abine, inhibitors of complex I of the ETC (such as rote-
none), the mitochondrial uncoupler CCCP, and BH3-
mimetic inhibitors of Bcl-2, like ABT-737 [13, 34, 35]
(see Figs. 1 and 2 for an overview of druggable mito-
chondrial targets).
The next rate-limiting, and first committed, step in

glycolysis is phosphorylation of 6-phosphofructose by
phosphofructokinase-1 (PFK1) to produce fructose 1,6-
bisphosphate. PFK1 is allosterically activated by the
compound fructose 2,6-bisphosphate, which is overpro-
duced in many cancer types by the overexpression of
PFKFB3, a dual function 6-phosphofructo-2-kinase/fruc-
tose-2, 6-bisphosphatase that is a therapeutic target itself
[36]. Overexpression of PFKFB3, including in leukemia
cells, drives increased activity of PFK1, enabling in-
creased glycolytic flux. Computational analysis demon-
strated that a novel tumor suppressor, 3-(3-pyridinyl)-1-
(4-pyridinyl)-2-propen-1-one (3PO), can competitively
inhibit PFKFB3, and decreases intracellular concentra-
tions of fructose 2,6-bisphosphate; this subsequently de-
creases glycolytic flux in various tumor models [37]. The
same group synthesized 73 derivatives of 3PO, one of
which (PFK15) was pre-clinically evaluated for targeting
resistant hypoxic cancer cells [37]. 3PO was shown to ef-
fectively reduce lactate production and cell growth in a
leukemia model [38].
A careful analysis of AML patients has revealed a var-

iety of different genetic contributions to disease progres-
sion, including some that alter glycolytic activity. One
commonly mutated gene is the FMS-like tyrosine kinase
3 gene (known as CD135 or FLT3). Although several
amino acid substitutions have been found, the most
common category of mutation identified is internal

tandem duplication of one or more codons near the
transmembrane domain (known as FLT3-ITD). This
class of mutations is found in approximately one-third
of AML patients and is associated with poor prognosis
and increased risk of relapse [39–42]. Oncogenic muta-
tions in FLT3 trigger overactivation of the tyrosine kin-
ase, which promotes several pro-survival effects in cells,
including AKT-mediated upregulation of hexokinase—
increasing their glycolytic activity [43]. There has been
an explosion in treatments available for patients with
FLT3 mutations, including a number of tyrosine kinase
inhibitors like midostaurin and lestaurtinib (derivatives
of staurosporine that target multiple tyrosine kinases),
sorafenib, quizartinib, crenolanib, and gilteritinib [44].
Of these, only midostaurin and gilteritinib have received
approval from the US Federal Drug Agency, and the lat-
ter is the first drug identified to target both internal tan-
dem duplications and tyrosine kinase domain mutations
[45]. The metabolic shift caused by the mutation also
sensitizes these cells to glycolytic inhibitors like 3-
bromopyruvate, which potentiates treatment with tyro-
sine kinase inhibitors [34, 43].

Citric acid cycle disruptions in AML blasts and
LSCs
Targeting enzymes involved in the flux of pyruvate into
the mitochondrial metabolism or citric acid cycle (CAC)
is another fruitful anti-leukemia strategy. In the transi-
tion between glycolysis and the CAC cycle, pyruvate
needs to be decarboxylated and condensed with coen-
zyme A (CoA) to yield acetyl-CoA that can be combined
with oxaloacetate to yield citrate. Acetyl-CoA produc-
tion requires the pyruvate dehydrogenase complex
(PDC), which is comprised of three different enzymes
[46]. Interestingly, cancer tissues often exhibit increased
expression of PDC kinases, which limit CAC activity,
driving pyruvate toward conversion to lactate, with im-
portant implications for energy production and modifi-
cation of the tumor microenvironment. High expression
of PDKs in AML patients (particularly PDK3, which is
the most active isoform) is a negative prognostic factor
for survival [47].
Several synthetic inhibitors of PDKs have been identi-

fied, such as Nov3r, AZD7545, Pfz3, radicicol, and CPI-
613 [46]. The addition of CPI-613 to conventional
chemotherapy is a promising approach for older AML
patients and those with poor-risk cytogenetics [48]. Un-
fortunately, most of these compounds have IC50 values
in the low- to mid-millimolar range, suggesting that it
would be very difficult to deliver appropriate concentra-
tions of these compounds to tumor cells, particularly
without unacceptable levels of off-target effects.
Mutations in the isocitrate dehydrogenase (IDH) genes

of AML patients provided researchers with one of their
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first hints that mitochondrial metabolism was compro-
mised in AML [30]. This occurs in 20% of AML cases and
is associated with grim prognoses (median survival after
diagnosis is approximately 6 months) [49]. Commonly,
this results in neofunctionalization of IDH1 (cytoplasmic)
and IDH2 (mitochondrial) enzymes, allowing them to
convert α-ketoglutarate into 2-hydroxyglutarate. This
onco-metabolite interferes with cellular metabolism and
epigenetic regulation [50] and contributes to mitochon-
drial DNA instability [51]. It is believed that the ability of
2-hydroxyglutarate to interfere with processes that require
α-ketoglutarate, such as histone and DNA demethylation,
is also likely to interfere with the prolyl hydroxylases that
regulate HIF-1α [52]. As noted above, HIF-1α is well
known to play important roles in HSC and LSC mainten-
ance [53]. Recently, ivosidenib and enasidenib, inhibitors

of IDH1 and IDH2, have been approved by the US FDA
for AML treatment [54]. Mutant IDH proteins can induce
a reversible block of differentiation in leukemic cells by
preventing IDH enzyme function [55].

Glutamine: key amino acid for cancer cell viability
Although cancer cells require a wide variety of mate-
rials for their survival and growth, at the most basic
level this can be reduced to the demand for two nutri-
ents: glucose (for anaerobic glycolysis) and glutamine
[56]. Glutamine's uniquely important role in cancer
arises from its ability to activate the key mTORC1
pathway (which integrates myriad inputs to regulate
metabolic activity, autophagy, and apoptosis) [57, 58].
Glutamine can also be condensed with cysteine and gly-
cine to form glutathione, which supports redox

Fig. 1 Druggable mitochondrial targets in AML cell and selected pharmacological agents. A depiction of mitochondria, showing important
biochemical targets (e.g., the citric acid cycle, mtDNA, mitophagy, etc.) and the drugs that are known to target each. The electron transport chain
appears in Fig. 2. α-TOS: (+)alpha-tocopheryl succinate; ANT: adenine nucleotide translocator; ATO: arsenic trioxide; CCCP: carbonyl cyanide m-
chlorophenyl hydrazone; CPT1: carnitine O-palmitoyltransferase 1; DAP: 2,2-dichloroacetophenone; DCA: dichloroacetate; ddC: 2′3′-dideoxycytidine;
DHODH: dihydroorotate dehydrogenase; FAO: fatty acid oxidation; glucoso-6-P: glucose-6-phosphate; IDH2mut: mutant isocitrate dehydrogenase 2;
Mcl1: myeloid cell leukemia 1; miR: miRNA; mtDNA: mitochondrial DNA; PDC: pyruvate dehydrogenase complex; PDK: pyruvate dehydrogenase
kinase; ROS: reactive oxygen species; SR4,9: dichlorophenyl urea compounds; CAC: citric acid cycle; UCP2: uncoupling protein 2; 2-DG: 2-deoxy-D-
glucose; 3-BP: 3-bromopyruvate; 3-BrOP: 3-bromo-2-oxopropionate-1-propyl ester; I–V: Complexes of mitochondrial electron transport chain
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regulation and limits ROS damage; it also provides ni-
trogen for the synthesis of nucleotides for DNA replica-
tion [29, 59].
The key first step in the use of glutamine is carried

out by glutaminase, which deaminates glutamine to yield
glutamate. Inhibiting glutaminases has proven to be a
popular anti-cancer strategy [60]. The most effective
current candidate is Calithera’s telaglenastat, also known
as CB-839. As might be expected, given the functions of
glutamine in cancer, telaglenastat increases susceptibility
to redox-targeting therapies like arsenic trioxide and
homoharrintonine and improves rates of AML apoptosis
[61], while decreasing mTOR signaling [60].
Several AML mutations are known to generate idio-

syncratic sensitivities to glutamine metabolism. For ex-
ample, BPTES, from which CB-839 was derived, exhibits
some specificity for IDH-mutated AML cells [62]. FLT3-
ITD mutations are another example: aberrant FLT3 ex-
pression likely increases glutaminolysis. Inhibiting func-
tion with the tyrosine kinase inhibitor AC220 (also
known as quizartinib) impairs glutamine uptake and
glutathione production, hypersensitizing AML cells to
oxidative stress [63]. Combination treatment of FLT3-
ITD AML cells/primary samples with CB-839 and
AC220 consistently resulted in reduced oxygen con-
sumption, increased ROS production, and the activation
of apoptosis [64].

Dependency on mitochondrial mass,
mitochondrial respiration, and OxPhos
Both myeloblasts and LSCs have been shown to have in-
creased mitochondrial mass compared with their healthy
counterparts, although this difference is more pro-
nounced in myeloblasts than in the CD34+CD38− LSCs,
further demonstrating the metabolic differences between
these populations [65]. Intriguingly, this increase is not
associated with a concomitant increase in respiratory
function; instead, these cells exhibit a reduced spare re-
serve capacity, suggesting that their mitochondria are
much less efficient [66]. Moreover, we have recently
shown that AML cells have reduced coupling efficiency
with underlying pre-existing proton leak and enhanced
sensitivity to mitochondrial uncouplers compared with
normal blood cells [67]. Interestingly, these phenotypes
have led to the suggestion that AML progression re-
quires increased mitochondrial biogenesis and OxPhos
[67–71].
The importance of OxPhos is further highlighted by

the fact that a cytarabine-resistant population of AML
cells show enrichment not in LSCs per se, but in cells
with up-regulated mitochondrial mass, membrane po-
tential, and OxPhos. Importantly, inhibiting the latter
improved sensitivity to cytarabine [68]. Quiescent LSCs
with a low level of ROS are more reliant on oxidative
phosphorylation, as they cannot efficiently utilize

Fig. 2 Mitochondrial electron transport chain (ETC) as a therapeutic target in AML. A schematic representation of the ETC, showing the five
complexes and potential therapeutic compounds that target each. Also shown is ROS, since the ETC is a major producer of the ROS in the cell by
way of electron leak through complexes I and III. ATO: arsenic trioxide; α-TOS: (+)alpha-tocopheryl succinate; ANT: adenine nucleotide
translocator; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DHODH: dihydroorotate dehydrogenase; ROS: reactive oxygen species; SR4,9:
dichlorophenyl urea compounds; UCP2: uncoupling protein 2; I–V: complexes of mitochondrial electron transport chain
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glycolysis for energy homeostasis [72]. Consistent with
this, the antimicrobial tigecycline, which inhibits mito-
chondrial translation, selectively kills LSCs (compared
with HSCs) by compromising mitochondrial biogenesis
in AML cells [65]. Unfortunately, a clinical trial studying
the efficacy of intravenous infusion of tigecycline for re-
fractory AML patients failed to show a clinical response,
possibly due to the drug's short half-life [73]. Intri-
guingly, AML cells, including LSCs, are capable of taking
up functional mitochondria from other cells in their en-
vironment, such as bone marrow cells, increasing their
mitochondrial mass, and this phenomenon is thought to
contribute to chemoresistance [74, 75]. This mitochon-
drial transfer increases during chemotherapeutic treat-
ment and was proposed as an additional mechanism that
provides AML cells with energy [75]. More specifically,
bone marrow mesenchymal stem cells significantly pro-
tect leukemic cells from chemotherapy-induced ROS by
increasing glutathione availability and utilization, mainly
via the glutathione peroxidase system [75].
Mutations in mitochondrial genes that encode com-

plexes I, III, and IV of the electron transport chain
(ETC) have been linked to worsened outcomes in AML
patients, suggesting that loss of proper function exacer-
bates disease [76]. However, there is substantial evidence
that the complexes of the ETC are viable targets for
therapeutic intervention, including in AML. For this rea-
son, various strategies to disable mitochondrial ETC
have been investigated in AML.
Among complex I inhibitors, the best known are the

anti-diabetic biguanide metformin and the compound
IACS-010759 (reviewed in [77, 78]). Metformin stimu-
lates metabolic reprogramming, increasing glycolysis,
pentose phosphate pathway, and fatty acid and anaplero-
tic metabolism and changing mitochondrial gene expres-
sion in leukemic cells [79]. Unfortunately, metformin is
ineffective as an anti-AML agent on its own. Although it
blocks mitochondrial respiration, it barely affects target
cell proliferation or viability [77, 80].
In contrast, a more potent complex I inhibitor, IACS-

010759, robustly inhibits proliferation and induces
apoptosis, likely through a combination of energy de-
pletion and impaired nucleotide biosynthesis due to re-
duced glutaminolysis [81]. Clinical trials with IACS-
010759 for AML patients are still ongoing [81], but
there have already been reports of it being used in com-
bination with venetoclax, which showed strong promise
at targeting LSCs and myeloblasts using a PDX model
[82]. Similarly, we have recently determined that IACS-
010759 can synergize with vinorelbine to improve effi-
cacy and specificity, including in primary cells from
AML patients [35].
In that same study, we also determined that rotenone,

a well-known inhibitor of complex I, could synergize

with the glycolytic inhibitor 2-DG. Rotenone has previ-
ously been investigated as a potential cancer therapeutic
[83], although it was determined that its off-target tox-
icity and resultant hematopoietic suppression make it in-
appropriate for use at the dosages required to prevent
proliferation [84]. By pairing it with other compounds,
the dose required for efficacy can be significantly re-
duced, increasing the chance that the targeted effects
would be more specific [35].
More recently, another drug called mubritinib (also

known as TAK-165) was shown to have a strong effect
in vivo against AML [85]. Mubritinib, canonically an in-
hibitor of ERBB2 (a receptor tyrosine kinase of the EGF
receptor superfamily), was shown to inhibit the transfer
of electrons through the ETC by blocking the function
of complex I at ubiquinone [85]. This mechanism is
similar to rotenoids and has similar efficacy.
Most attempts to target the ETC have focused on

complex I, but some limited research has been per-
formed on other ETC complexes. For example, a com-
bination of venetoclax and azacytidine appears to have a
synergistic effect that blocks glutathionylation of succin-
ate dehydrogenase A (a component of complex II) and
kills both myeloblasts and LSCs [86]. Targeting complex
III may also be productive. For example, antimycin A
more effectively limits oxidative phosphorylation and
generates increased ROS production in primary AML
cells [66]. As will be discussed in the next section, AML
cells and LSCs are more sensitive to ROS than their
healthy counterparts. Like rotenone, antimycin A is a
well-known inhibitor of mitochondrial function; also like
rotenone, it is unlikely to be successfully utilized on its
own as a therapeutic due to off-target activity. However,
it has been effectively combined with a third-generation
glycolytic inhibitor, 3-bromo-2-oxopropionoate-1-propyl
ester, which serves as a cell-permeable ester of 3-
bromopyruvate [87]. This combination potentiated ATP
depletion and promoted apoptosis in leukemic cells [87].
It has also shown potential in combination with rapamy-
cin in leukemia and neuroblastoma [87, 88]. Finally, tar-
geting the mitochondrial ATP-synthase (sometimes
called complex V) with oligomycin A greatly sensitized
leukemia cells to tyrosine kinase inhibitors in FLT3-
dependent AML cells, both in vitro and in vivo [89].
Disruption of the ETC on a wider scale is also effective

at reducing leukemia cell viability. By targeting the mito-
chondrial protease ClpP with a beta-lactone inhibitor
called A2-32-01, Cole and colleagues demonstrated that
this compound was effective at killing leukemia cells
with high levels of ClpP expression [90]. Interestingly,
this phenotype only appears in approximately half of the
leukemic cell lines that were analyzed. Multiple publica-
tions have demonstrated that many of the targets of the
ClpP protease are members of the ETC complexes [90,
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91], perhaps to ensure that the components of the com-
plexes remain in stoichiometric balance.

Modulation of mitochondrial ROS as AML
treatment strategy
The formation of ROS is essential for normal cell physi-
ology (Fig. 3); ROS are generated during mitochondrial
oxidative metabolism as well as in response to exposure
to xenobiotics, cytokines, and bacterial invaders [92].
But ROS have also long been acknowledged as having a
role in cellular signaling [93, 94]. For instance, mito-
chondrial ROS stimulate signaling pathways promoting
tumorigenesis such as JNK/ERK, HIF-1α, and mitochon-
drial biogenesis [94]. ROS have also been shown to regu-
late protein function (including kinases and
phosphatases) via various oxidative post-translational
modifications [93].
Superoxide anions (O2

−) are produced as side products
from the respiratory chain in mitochondria, by NADH
oxidases 1–3 and 5 (NOX), and by other cellular en-
zymes. The electron transport chain, predominantly
complexes I and III, is a major source of superoxide.
During oxidative phosphorylation, 1–5% of electrons es-
cape from ETC and produce O2

− [93]. All NOX family
members are transmembrane proteins that use

intracellular NADPH to reduce extracellular oxygen to
ROS [93]. Interestingly, NOX-derived ROS are linked to
activating mutations in FLT3 and Ras: FLT3-ITD muta-
tion in AML causes Akt activation and subsequent
stabilization of p22phox, a regulatory subunit for NOX1-4
[93, 95]. Moreover, in human AML, NOX2-derived
superoxide stimulates bone marrow stromal cells to
transfer their mitochondria to AML blasts [96]. Super-
oxide anions are converted to hydrogen peroxide (H2O2)
by various superoxide dismutases, which are found in
several subcellular compartments (the charged nature of
superoxide limits its ability to move throughout the cell).
Hydrogen peroxide is also produced by NOX4. Other re-
active species, such as the short-lived hydroxyl radical
(OH·), lipid hydroperoxides, peroxynitrite (NO3

−), and
hypochlorous acid (HClO), arise by metabolic reactions
involving superoxide or H2O2 [95].
For normal HSCs, ROS present a significant threat, as

they can trigger apoptosis, loss of quiescence, or induce
differentiation [97]. As noted above, this is also true of
LSCs. Metabolic adaptations to limit this sensitivity are
likely to emerge and may include increased proton leak
down the electrochemical gradient into the mitochon-
drial matrix [98], mitochondrial uncoupling (abrogation
of ATP synthesis in response to ΔΨm) [99], and

Fig. 3 Central role of reactive oxygen species (ROS) in AML biology and treatment. A representation of the wide variety of factors that produce
and limit the production of ROS in AML, along with the outcomes of excess ROS production in these cells. ETC: electron transport chain; FOXO:
forkhead box protein O; HDACi: histone deacetylases inhibitors; HIF-1α: hypoxia-inducible factor 1α; JNK: c-Jun N-terminal kinase; Nrf2: nuclear
factor erythroid 2-related factor 2; NOX: NADH-oxidases; OxPhos: oxidative phosphorylation; PTM: post-translational modifications
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increased autophagy. These events also promote the
Warburg effect and cataplerotic reactions from the CAC
and support the shift toward glutaminolysis-dependent
fatty acid oxidation (FAO) [100]. This may be why dis-
rupting these events is effective at killing cancer cells.
The reduced spare respiratory capacity of AML myelo-
blasts also makes them unusually vulnerable to oxidative
metabolic stress, indicating that increasing ROS may be
a viable clinical strategy [66].
The potential for killing AML cells using ROS has

been reviewed recently [93]. Redox-based treatments of
hematological malignancies can be divided into two dif-
ferent approaches: 1) compounds that stimulate the
overproduction of ROS; and 2) compounds that com-
promise the mitochondrial antioxidant system [101]. It
is known that many AML treatments and novel com-
pounds with anti-leukemic activities stimulate ROS pro-
duction, including cytarabine and anthracyclines (the
well-known components of induction and consolidation
therapy), histone deacetylase inhibitors, such as vorino-
stat, and the proteasome inhibitor bortezomib [101,
102]. For example, the cytotoxic effects of the anthracy-
cline doxorubicin are linked to the stimulation of the
Fenton reaction that generates lethal hydroxyl radicals
from superoxide [103]. The Fenton reaction requires the
presence of heavy metals such as iron. One side effect of
doxorubicin treatment is the preferential accumulation
of iron inside of mitochondria [104]. Contrary to anthra-
cyclines, the HDAC inhibitor vorinostat up-regulates
ROS generation in leukemic cells by activating NADH
oxidases [105]. Furthermore, the combination of vorino-
stat and PEITC (β-phenylethyl isothiocyanate), depleting
antioxidant glutathione, acts synergistically in AML cells
via modulating cellular redox status and H2O2 accumu-
lation [105].
Arsenic trioxide (ATO) is another interesting example.

ATO is a potent ROS inducer and is widely used in
combination with all-trans retinoic acid (ATRA) to treat
acute promyelocytic leukemia (APL), a subtype of AML
[106, 107]. ATRA functions in this combination to
stimulate differentiation of promyelocytic blast cells,
which then spontaneously undergo apoptosis. ATRA
also appears to trigger mitochondrial permeability tran-
sition and cell death [31]. ATO has replaced anthracy-
cline antibiotics (e.g., daunorubicin, doxorubicin, etc.) as
the choice companion drug to treat APL since it exhibits
less severe side effects [108]. The cytotoxic effects of
ATO on leukemic cells include oxidative stress induc-
tion, depolarization of the mitochondrial membrane,
DNA damage, and induction of apoptosis [109]. More
specifically, ATO increases superoxide generation in
leukemia cells by inhibiting mitochondrial respiration
upstream of complex IV [110]. Interestingly, in APL cell
lines, increased catalase expression has been shown to

correlate with ATO resistance [111]. Although ATO has
been shown to work in concert with high-dose ascor-
bate, killing AML and APL blasts while leaving HSCs in-
tact [112], ATO was not effective at treating non-APL
forms of AML [113].
There are also several plant-derived compounds that

exhibit anti-LSC properties, likely by targeting critical
mechanisms of redox balance. These molecules include
parthenolide, triptolide, cyclopamine, resveratrol, and
avocatin B [114]. Mechanistically, parthenolide and its
soluble analogue dimethylamino parthenolide stimulate
superoxide anion generation by activating NADH oxi-
dase, followed by activation of the kinase JNK and NK-
κB [115]. Interestingly, a rationally designed regimen
consisting of parthenolide, 2-deoxy-D-glucose, and tem-
sirolimus has been shown to selectively target LSCs with
little to no apparent effect on normal HSCs [116]. The
anti-leukemic activity of this regimen is associated with
its strong ability to induce oxidative stress without acti-
vating the compensatory responses in AML cells [116].
ROS-mediated dimerization of Bax, a pro-apoptotic
member of the Bcl-2 protein family, and oxidation of
cardiolipin trigger the release of cytochrome c into the
cytosol, and has been proposed as oxidative stress-based
mechanisms of apoptotic activation [117]. Another nat-
urally occurring compound, cyclopamine, inhibits hedge-
hog signaling and induces apoptosis in AML CD34+

blasts [114], and directly inhibits OxPhos in lung tumors
[118]. Avocatin B induces ROS-dependent,
mitochondria-mediated apoptosis in AML cells, as well
as inhibits fatty acid oxidation. It also synergizes with
cytarabine/doxorubicin to induce leukemia cell death
[114].
Increasing ROS level beyond the capacity of antioxi-

dant defense can cause several types of cell death in
AML [101, 102, 119]. Apoptosis is the most common
type of cell death resulting from increased ROS produc-
tion [120]. ROS may activate both mitochondrial (intrin-
sic) and death receptor (extrinsic) pathways of apoptosis.
Mitochondria-derived ROS are able to target mtDNA,
disrupt respiratory chain function, lead to loss of mito-
chondrial membrane potential, impair ATP synthesis,
and cause the release of cytochrome c due to mitochon-
drial outer membrane permeabilization [121, 122].
In addition to apoptosis, elevated ROS in AML may

also induce ferroptosis [123]. Ferroptosis is an iron-
dependent programmed cell death pathway caused by
the failure of glutathione-dependent antioxidant defense
and unregulated lipid peroxidation [124]. This has impli-
cations for AML therapy. For example, low doses of era-
stin (ferroptosis inducer) enhance the anti-cancer
activity of cytarabine or doxorubicin in AML cells [123].
Lastly, necroptosis as a type of cell death is frequently
associated with ROS generation in AML [120]. Death
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receptor activators (TNFα, FasL) can induce mitochon-
drial and non-mitochondrial ROS generation, followed
by activation of ASK1 (apoptosis signal–regulating kin-
ase 1) and p38 MAPK (mitogen-activated protein kin-
ase), which results in caspase-independent AML cell
death [121, 125].
One limitation of this approach, at least in theory, is

that the increased ROS will contribute to genomic in-
stability that may increase the probability of treatment
resistance, with the thought being that any cells that do
not develop resistance will perish, leaving only the resist-
ant cells to divide [126]. In addition, AML cells are not
the only cells that are very sensitive to ROS; HSCs also
exhibit strong sensitivity and it would be difficult to kill
the AML cells without also doing considerable, perhaps
irreparable, damage to the healthy HSCs.

Mitochondrial priming and Bcl-2 protein family
Another key requirement for the proliferation of AML
LSCs and blasts is the release from apoptotic activation.
Generally, in AML, this is achieved by the overexpres-
sion of pro-survival Bcl-2 family proteins, including Bcl-
XL, Mcl-1, and Bcl-2 itself [127]. The anti-apoptotic Bcl-
2 proteins are members of a larger superfamily of pro-
teins named after Bcl-2, the founding member. Proteins
in the family typically share Bcl-2-like homology do-
mains 1–4 (BH1-BH4), and include both pro- and anti-
apoptotic members, although there is a third group, pos-
sessing only the BH3 domain, that are also pro-
apoptotic [128, 129]. Members of this family trigger
apoptosis by intercalating into the outer membrane, in-
creasing its permeability, releasing pro-apoptotic factors,
and activating the caspases responsible for a commit-
ment to cell death [130]. Insertion into the membrane
appears to, at least partially, depend on whether Bcl-2-
family members have oligomerized via their BH3 do-
mains. As reviewed elsewhere [128, 131], conventional
cytotoxic chemotherapy often activates apoptosis via
mitochondrial permeabilization using Bcl-2-family
members.
For these reasons, it has become common to target

the BH3 domain of the anti-apoptotic members of the
Bcl-2 family with small molecule drugs [132]. The best
known and most successful BH3-domain targeting drugs
include obatoclax, ABT-737, and an orally available de-
rivative called ABT-263 (also known as navitoclax),
which target Bcl-2, Blc-XL, and Bcl-W, and ABT-199
(also known as venetoclax), which targets Bcl-2 [86,
132–135]. Venetoclax has become the most clinically ef-
fective BH3-targeting drug approved by the FDA for
leukemia treatment and has received FDA approval in
several different contexts [136–138]. A comprehensive
review of venetoclax’s use and function has recently

been published [139], so it will not be discussed in depth
here.
Although venetoclax has demonstrated encouraging

results in targeting Bcl-2, resistance can still develop.
The most common cause of this is stabilization of Mcl-1
[140]. This, along with the fact that Mcl-1 is essential for
the development and survival of AML cells, has led to
the development of selective Mcl-1 inhibitors [141]. Sha-
ron et al. used CRISPR knockout screen to determine
that ribosome-targeting antibiotics such as tedizolid can
overcome venetoclax resistance by suppressing mito-
chondrial translation and respiration, and activating the
cellular stress response [142]. Moreover, the addition of
tedizolid to azacitidine and venetoclax further enhanced
the killing of resistant AML cells in vitro and in vivo
[142].
Although mitochondrial permeabilization is sometimes

considered to be an irreversible commitment, there is
evidence that this may be an oversimplification. For ex-
ample, it has been reported that not all mitochondria
undergo permeabilization simultaneously [143, 144]. In
addition, it is possible to measure the differences in
mitochondrial permeabilization, which revealed that
these differences, termed “priming”, are associated with
sensitivity to chemotherapy [145]. Interestingly, lower
priming is also associated with resistance to chemother-
apy [145]. Together, these phenomena suggest that tar-
geting mitochondrial permeability may be an effective
method of treating AML in general.

Mitophagy as a target for AML therapy
Even in healthy cells, the production of ROS is associ-
ated with damage to mitochondria. This damage reduces
their effective function and can trigger apoptosis or
macroautophagic mitochondrial recycling (also known
as mitophagy). Under normal circumstances, mitochon-
dria undergo frequent fission and fusion events that, by
means yet unknown, sort intact and damaged compo-
nents so that the former can be retained while the latter
are recycled [146].
Although the sorting mechanisms remain unclear, the

events coming after have begun to be illuminated. Cur-
rently, the best-known regulators of mitophagy are the
PTEN-induced kinase 1 (PINK1) and the E3 ubiquitin
ligase Parkin, which are conserved at least as far back as
the nematode Caenorhabditis elegans. While mitochon-
dria are healthy, PINK1 is imported into mitochondria,
where it is immediately cleaved by resident proteases
[147]. Under stress conditions or loss of mitochondrial
membrane potential (i.e., if mitochondrial import is
blocked), PINK1 accumulates on the surface of mito-
chondria, phosphorylating itself and Parkin [148–150].
Once recruited, Parkin catalyzes the ubiquitination that
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allows mitochondria to be recognized by autophago-
somes [146].
Broadly speaking, the idea of autophagy-dependent cell

death or, more specifically, mitophagy-dependent cell
death, remains controversial [151]. On the one hand, the
ability to remove defective mitochondria (mitigating
ROS, preventing the activation of apoptosis, and provid-
ing building blocks for cell division) makes mitophagy
an important tool for leukemic progression. Knockdown
of autophagic genes involved in mitochondrial clearance,
including BNIP3L/Nix and SQSTM1/p62 also sensitizes
cells to mitochondria-targeted therapies [152, 153], argu-
ing that these genes promote cancer cell survival. LSCs
have also recently been argued to leverage mitophagy in
an attempt to maintain stemness [154]. Mitophagy also
promotes survival in the hypoxic conditions that exist in
the bone marrow microenvironment [155]. Inhibiting
autophagy in these conditions decreased in vivo tumor
burden and enhanced apoptosis [155].
In contrast, there is some evidence that mitophagy can

limit the growth of cancer cells. For example, inhibiting
the activity of complex I in melanoma cells depolarizes
the mitochondrial membrane, upregulating ROS, and
causes mitophagy-dependent cell death activation [156].
Another report has demonstrated that a trihydroxyphe-
nyl alkone also depolarizes the mitochondrial membrane
and triggers autophagic death of melanoma cells [157].
Additionally, loss of autophagy in vivo is associated with
a glycolytic shift and more aggressive growth of myelo-
cytes [158]. Sodium selenite, a known activator of mito-
phagy, triggers programmed cell death in malignant
glioma cells via an autophagy-dependent manner [159].
Disruption of autophagy genes is also associated with
overproliferation in several solid tumors, further
strengthening this connection [160, 161].
Critically, this included HSCs, where deletion of Atg7

or Atg5 resulted in myeloproliferation [158, 162]. Inter-
estingly, these proliferated cells seemed to have lost their
stemness and were not able to serve as LSCs, perhaps in-
dicating another key difference between LSCs and mye-
loblasts. A statistical analysis has demonstrated that
mutation of autophagy-related genes occurs more fre-
quently in AML than would be expected by chance
[158].
Perhaps most promisingly, there is at least one report

that appears to directly target leukemia using activation
of mitophagy [163]. The authors of this report demon-
strated that FLT3-ITD AML cells were deficient in C18

ceramides, which have been associated with apoptosis-
independent autophagic cell death [164]. The authors
observed that the FLT3-ITD mutation reduced the func-
tion of the CerS1 gene (which is responsible for the bio-
synthesis of C18 ceramides) and that disrupting FLT3
improved C18 synthesis, which localized to

mitochondria, recruited autophagic machinery, and trig-
gered autophagy [163]. Normal markers of apoptosis
and necrosis were not observed and pan-caspase and
necroptotic inhibitors did not affect FLT3-ITD-targeted
rescue. In contrast, bafilomycin A1, which prevents acid-
ification of the autophagolysosome, prevented the cyto-
toxicity that was triggered by the kinase inhibitors
sorafenib, crenolanib, or quizartinib [163]. The report
also included evidence that a synthetic ceramide analog
could potentiate mitophagy and kill tumor cells by over-
coming their resistance to kinase inhibitors. Importantly,
this effect was specific to leukemia cells and was ob-
served in a murine PDX AML model, supporting both
the potential of this approach and of this particular
therapy.
Ultimately, the utility of mitophagy as a tool in the ar-

senal of anti-cancer treatments may be limited to certain
genetic causes of AML or to certain populations of cells,
such as myeloblasts or LSCs, but further study of this
possibility will be essential to make this determination.

Conclusions and future perspectives
Over the last three decades, it has become clear that
AML cells gain considerable metabolic plasticity during
their escape from bone marrow niches and their transi-
tions to proliferating cancer cells. Mitochondria are a
central hub for many of these pathways, and the depend-
ency of these cells on mitochondrial function and health
is quickly becoming a hallmark of AML, and potentially
their Achilles’ heel. It is not surprising that many agents
targeting mitochondria and mitochondrial function are
currently being investigated in clinical trials or have
already been approved by the US FDA for treatment of
patients (summarized in Tables 1 and 2, Fig. 1).
One of the most promising future directions in AML

therapy is the search for drug combinations with syner-
gistic activity. The utility of this approach has been
borne out with the classic example of cytarabine and
daunorubicin [210, 211]. These AML-targeted combina-
tions may be comprised of drugs from the same class,
such as the pairing of various anthracyclines with cytara-
bine, or from drugs with different mechanisms of action,
such as quizartinib and azacitidine, which inhibit FTL3
and DNA methyltransferase activities, respectively [288,
289]. Since monotherapies are known to result in the de-
velopment of compensatory mechanisms and/or resist-
ance, the rational design of drug regimens is of great
importance. A carefully considered approach can also be
more effective and comprehensive than traditional high-
throughput searches [116, 290]. For example, the sesqui-
terpene lactone parthenolide was found to target the
redox balance in AML cells, but also led to compensa-
tory activity from the Nrf2 and pentose phosphate path-
ways [116]. However, by combining parthenolide with
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Table 1 Mitochondria-targeted chemotherapeutics (mitocans) as monotherapy against AML

N Drugs Targets/inhibition related to
mitochondria

AML subgroup if
applicable

Level 1:
preclinical
(in vitro, PDX)

Level 2: clinical trials/
studies in AML patients

1. DNA-targeted agents/cytotoxic chemotherapy

1.1.1
Cytarabine DNA polymerase, topoisomerase II,

incorporation into DNA/RNA
AML [165] [166]

1.1.2
Doxorubicin/idarubicin/
daunorubicin

[167]

1.1.3
Mitoxanthrone [168] [169]

1.1.4
Etoposide [170] Phase II [171]

1.2 ddC/alovudine Mitochondrial DNA polymerase γ,
OxPhos

AML [172, 173] –

1.3 Bleomycin mtDNA, OxPhos AML [174] –

2. Bcl-2 family inhibitors

2.1.1
Navitoclax Bcl-2 AML [72] –

2.1.2
Obatoclax [175] –

2.1.3
Venetoclax R/R AML/unfit for intensive

therapy
[176, 177] Phase II [138]

2.2 Obatoclax Pan Bcl-2 de novo AML [178] Phase I/II [179]

R/R AML Phase I [180]

2.3.1
S63845/S64315 Mcl1 AML [181] Phase I (NCT02979366)

2.3.2
A-1210477 [182] –

2.3.3
AZD5991 R/R AML [183] Phase I/II (NCT03218683)

2.4 α-TOS Bid cleavage, complex I, ROS
production

APL [184, 185] –

3. Agents targeting mitochondrial metabolism

3.1.1
2-DG Hexokinase II AML, FLT3-ITD AML [34, 43] –

3.1.2
3-BP Hexokinase II, OxPhos, ROS

production
[186, 187] –

3.1.3
3-BrOP Hexokinase II [43] –

3.2 3-PO 6-Phosphofructo-1-kinase AML [37] –

3.3.1
CPI-613 PDK, OxPhos AML [188] Phase I [188]

3.3.2
DAP [189] –

3.4 Enasidenib IDH2mut IDH2mut R/R AML [190] Phase I/II [191]
FDA-approved

3.5.1
Telaglenastat Glutaminase AML [192] Phase I (NCT02071927)

3.5.2
BPTES AML with IDH1/2

mutations
[62] –

3.6.1
ADI-PEG 20 Arginine depletion R/R or poor-risk AML [193] Phase II (NCT01910012)

3.6.2
BCT-100 Pediatric R/R AML [194] Phase I/II (NCT03455140)
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the anti-glycolytic 2-deoxy-D-glucose and the mTOR in-
hibitor temsirolimus, effective AML eradication was
achieved [116]. Similarly, classic chemotherapeutics can
be paired with novel classes of treatments like

autophagic inhibitors or miRNA mimics/antisense to
achieve a synergistic therapeutic effect [291, 292].
Where AML was once one of the most lethal and most

rapidly developing cancers, the identification and

Table 1 Mitochondria-targeted chemotherapeutics (mitocans) as monotherapy against AML (Continued)

N Drugs Targets/inhibition related to
mitochondria

AML subgroup if
applicable

Level 1:
preclinical
(in vitro, PDX)

Level 2: clinical trials/
studies in AML patients

3.7 L-asparaginase Asparagine depletion, glutamine
uptake inhibition

AML [195] Phase I (NCT02283190)

3.8.1
Etomoxir FAO (CPT1) AML [21] –

3.8.2
Ranolazine FAO (3-ketoacyl CoA thiolase)

3.8.3
ST1326 FAO (CPT1) [196]

3.8.4
Avocatin B FAO, ROS production, cytochrome

c release
[197]

4. Agents targeting OxPhos and/or mitochondrial biogenesis/respiration

4.1 Tigecycline Mitochondrial translation,
mitochondrial biogenesis

AML [65] Phase I [73]

4.2.1
Metformin Complex I, mitochondrial oxygen

consumption
AML [79] –

4.2.2
IACS-010759 R/R AML [81] Phase I (NCT02882321)

4.2.3
Rotenone AML [35] –

4.3 A2-32-01 Mitochondrial protease ClpP,
Complex II

AML [90] –

4.4 Cysteinase Complex II AML [198] –

4.5 Antimycin Complex III AML [66] –

4.6.1
Isobavachalcone Pyrimidine biosynthesis (DHODH) AML [199] –

4.6.2
PTC299 R/R AML/AML patients

unfit for standard therapy
[200] Phase I (NCT03761069)

4.6.3
ASLAN003 [201] Phase II (NCT03451084)

4.6.4
BAY 2402234 AML [202] Phase I (NCT03404726)

5. Agents inducing ROS production/targeting MPTP

5.1 Arsenic trioxide ANT, ROS production, MMP, DNA
damage

De novo AML, secondary
AML, R/R AML

[109] Phase II [203]

APL Phase I/II (NCT00008697)

5.2 Lonidamine ANT, OxPhos (complex II) AML [67, 204, 205] –

5.3 Parthenolide ROS production, NF-kB inhibition AML [206] –

5.4 Triptolide (minnelide as
a soluble prodrug)

ROS production, Mcl1, MMP AML [207] Phase I/Ib (NCT03760523)

5.5 Resveratrol NF-kB, apoptosis induction AML [208] –

6. Mitochondrial uncouplers

6.1 CCCP MMP AML [67] –

6.2 Dichlorophenyl urea
(SR4, SR9)

MMP AML [209] –
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Table 2 Mitochondria-targeted chemotherapeutics (mitocans) in synergistic combinations against AML

N Drug combination Targets/inhibition
related to
mitochondria

AML subgroup if applicable Level 1:
preclinical
(in vitro,
PDX)

Level 2: clinical
trials/studies in
AML patients

1. DNA-targeted combinations/cytotoxic chemotherapy

1.1 CPX-351, vyxeos (cytarabine +
daunorubicin in liposomal
encapsulation at 5:1 synergistic
ratio)

mtDNA AML with myelodysplasia-related
changes; therapy-related AML. Can be
used to treat elderly patients

[210] Phase III [211]
FDA-approved

1.2 Etoposide + cytarabine +
azacitidine

mtDNA Elderly de novo AML patients [212] [213]

1.3 Cytarabine/daunorubicin/idarubicin
+ HDACi (vorinostat, parabinostat,
etc)

mtDNA R/R AML [3, 214] –

Pediatric AML Phase I
(NCT02676323)

de novo AML Phase II [215]

1.4 Etoposide + mitoxanthrone mtDNA R/R AML Phase II [216]
[217];

1.5.1 MEC (mitoxanthrone, etoposide,
and cytarabine) + sirolimus

mtDNA, mTOR R/R AML or secondary AML [218, 219] Phase I [220]

1.5.2 Cytarabine (consolidation therapy) +
everolimus

AML [221]

1.5.3 Low-dose cytarabine + everolimus Elderly AML Phase Ib [222]

1.5.4 Cytarabine + daunorubicin +
everolimus

Relapsed AML Phase I
(NCT00544999)

1.6 Cytarabine + ibrutinib mtDNA, NF-kB AML [223] Phase IIa [224]

1.7 Cytarabine + 2-DG mtDNA, hexokinase II AML [13, 34] –

2. Combinations based on apoptosis induction (Bcl-2, Mcl1 inhibition)

2.1 Venetoclax + hypometylating
agents (e.g., decitabine, azacitidine)

Bcl-2,OxPhos (complex
II),amino acid uptake,
Nrf2 pathway

De novo/relapsed AML [86, 225, 226] Phase Ib [227]
FDA-approved

2.2.1 Venetoclax/obatoclax + FAO
inhibitors (etomoxir, ranolazine)

Bcl-2, FAO (CPT1a),
MPTP

AML [21] –

2.2.2 Venetoclax + azacitidine + FAO
inhibitors

[28]

2.3.1 Venetoclax + low-dose cytarabine Bcl-2, mtDNA AML patients > 60 y.o. ineligible for
induction chemotherapy

[228] Phase Ib/II [229];
phase III
(NCT03069352)
FDA-approved

2.3.2 Venetoclax + cytarabine +/-
idarubicin

Pediatric R/R AML Phase I [230]

2.3.3 Venetoclax + cytarabine +
daunorubicin; liposome-
encapsulated

R/R AML; de novo AML Phase II
(NCT03629171)

2.4 Venetoclax + FLT3-ITD inhibitor
(quizartinib)

Bcl-2 AML with FL3-ITD mutation [231] Phase Ib/II
(NCT03735875)

2.5 Venetoclax + IDH2 mutant inhibitor
(enasidenib)

Bcl-2, citric acid cycle AML with IDH2 mutation
R/R AML

[232] Phase Ib/II
(NCT04092179)

2.6.1 Venetoclax + tedizolid Bcl-2, mitochondrial
protein synthesis,
OxPhos

AML [142] –

2.6.2 Venetoclax + azacitidine +
tedizolide

2.7 Obatoclax + 2-DG Bcl-2, hexokinase II AML [34] –

2.8 S63845 + S55746 Mcl1, Bcl-2 AML [233] –

2.9.1 S63845 + daunorubicin Mcl1, mtDNA MLL-AF9 AML [234] –

2.9.2 S63845 + venetoclax Mcl1, Bcl-2
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Table 2 Mitochondria-targeted chemotherapeutics (mitocans) in synergistic combinations against AML (Continued)

N Drug combination Targets/inhibition
related to
mitochondria

AML subgroup if applicable Level 1:
preclinical
(in vitro,
PDX)

Level 2: clinical
trials/studies in
AML patients

2.10.1
A-1210477 + venetoclax Mcl1, Bcl-2 AML [140] –

2.10.2
UNBS1450 + venetoclax [235]

2.11 AZD5991 + venetoclax Mcl1, Bcl-2 AML [183] Phase I/II
(NCT03218683)

2.12 Obatoclax + HDACi Bcl-2,autophagy
induction

AML [236] –

3. Combinations targeting mitochondrial metabolism

3.1 CPI-613 + mitoxanthrone + high-
dose cytarabine

PDK, mtDNA R/R AML [48] Phase I [48]

3.2 Telaglenastat + venetoclax Glutaminase, Bcl-2 AML [59] –

3.3.1 Telaglenastat + arsenic trioxide Glutaminase, ROS
production, MMP

AML [61] –

3.3.2 Telaglenastat + homoharringtonine

3.4 Telaglenastat + azacitidine Glutaminase AML [237] Phase I
(NCT02071927)

3.5 Telaglenastat + AC220 (FLT3
inhibitor)

Glutaminase, ROS
production

FLT3-mutated AML [238] –

3.6.1 ADI-PEG 20 (pegylated arginase) +
cytarabine

Arginine depletion,
mtDNA

AML [193] Phase I
(NCT02875093)

3.6.2 BCT-100 (pegylated arginase) +
cytarabine

[194] –

3.7.1 Asparaginase + low/high-dose
cytarabine

Asparagine depletion,
mtDNA

R/R AML/Elderly AML patients > 65
y.o.

Phase II
(NCT01810705)
[239];

3.7.2 Asparaginase + high-dose cytara-
bine + mitoxanthrone

[240]

3.8 Etomoxir (FAO inhibitor) +
cytarabine

CPT1a, MPTP, mtDNA AML [21, 68] –

3.9.1 Etomoxir + arsenic trioxide CPT1a, MPTP, ROS
production

AML, APL [241] –

3.9.2 Etomoxir + arsenic trioxide + 2-DG/
lonidamine

CPT1a, MPTP, ROS
production, Hexokinase
II

3.10 Avocatin B + cytarabine FAO, ROS production,
mtDNA

AML [242] –

4. Combinations targeting OxPhos

4.1.1 Metformin + 2-DG Complex I, hexokinase II AML [79] –

4.1.2 IACS-010759 + 2-DG [35] –

4.1.3 Rotenone + 2-DG

4.2 Metformin + sorafenib Complex I, mTOR FLT3-mutated AML [243] –

4.3 Metformin + 6-BT Complex I, STAT5,
glycolysis

FLT3-mutated AML [244] –

4.4 Metformin + cytarabine Complex I, mTOR,
mtDNA

R/R AML [245] Phase I
(NCT01849276)

4.5 Metformin + NSAIDs (diflunisal +
diclofenac)

Complex I AML [80] –

4.6 CCCP + 2-DG MMP, hexokinase II AML [35, 67] –

4.7 IACS-010759 + vinorelbine Complex I, OxPhos AML [35] –
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Table 2 Mitochondria-targeted chemotherapeutics (mitocans) in synergistic combinations against AML (Continued)

N Drug combination Targets/inhibition
related to
mitochondria

AML subgroup if applicable Level 1:
preclinical
(in vitro,
PDX)

Level 2: clinical
trials/studies in
AML patients

4.8 IACS-010759 + doxorubicin +
cytarabine

Complex I, mtDNA AML [246] –

4.9 Antimycin + 3-BrOP Complex III, glycolysis,
ATP depletion

AML [87] –

4.10 Oligomycin + tyrosine kinase
inhibitors

Complex V, ROS
production

FLT3-mutated AML [89] –

4.11 Isobavachalcone + doxorubicin DHODH, mtDNA AML [199] –

4.12 ASLAN003 + azacitidine DHODH AML patients > 60 y.o. Phase II
(NCT03451084)

5. Combinations inducing ROS generation/targeting mitochondrial membrane complexes

5.1 Diamide + doxorubicin UCP2, mtDNA AML [247] –

5.2 Arsenic trioxide + high-dose
ascorbate

ANT, MMP,ROS
production

APL (more promising results than in
AML)

[112] Phase II
(NCT00184054)
[113, 248];

5.3.1 Arsenic trioxide + decitabine/
azacitidine

ANT, MMP,ROS
production

AML [249] Phase II
(NCT02190695)

5.3.2 Arsenic trioxide + decitabine/
azacitidine + ascorbate

Phase I [250]

5.4.1 Arsenic trioxide + low-dose
cytarabine

ANT, MMP, ROS
production, mtDNA

AML patients > 60 y.o. Phase I/II [251];
phase III
(NCT00513305)
[252];

5.4.2 Arsenic trioxide + high-dose cytara-
bine + idarubicin

AML patients < 60 y.o. Phase I [253]

5.5 Arsenic trioxide + mTOR inhibitors
(rapamycin)

ANT, MMP, ROS
production, mTOR

AML lacking t(15;17) translocation
(non-APL)

[254] –

5.6 Arsenic trioxide + proteasome
inhibitor bortezomib

ANT, MMP, ROS
production, NF-kB, UPR
activation

AML, APL/relapsed APL [255, 256] Phase II [257]

5.7.1 Arsenic trioxide + lonidamine ANT, MMP, ROS
production, mTOR,
glycolysis

AML [258] –

5.7.2 Arsenic trioxide + 3-BP ANT, MMP, ROS
production, glycolysis

AML [186] –

5.8 Arsenic trioxide + DCA ANT, MMP, ROS
production, PDK, Mcl1

AML, including FLT3-ITD, R/R AML [259] [259]

5.9 Arsenic trioxide + ATRA ANT, MMP, ROS
production

APL [260] Phase III [261]

5.10 Parthenolide + 2-DG+ temsirolimus ROS production, Nrf2,
PPP, mTOR, hexokinase
II

AML [116] –

5.11.1
Parthenolide + ibrutinib ROS production, NF-kB,

mtDNA
AML [223, 262] –

5.11.2
Daunorubicin + ibrutinib

5.12 Triptolide + idarubicin ROS production, Nrf2,
HIF1α

AML [263] –

5.13 Resveratrol + HDACi ROS production, DNA
damage

AML [264] –

5.14 Cytarabine + PK11195 (PBR ligand) mtDNA, MPTP AML [265] –

6. Combinations targeting autophagy/mitophagy
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development of effective treatments have made remis-
sion a common occurrence. These new approaches, like
conventional chemotherapy, can be very effective at in-
ducing remission, even complete remission. Also like
conventional treatments, however, they must take into
account the metabolic differences between AML myelo-
blasts and LSCs (such as the differences in energy pro-
duction, mitochondrial turnover, and sensitivity to ROS)
discussed above. As LSCs commonly persist after ther-
apy and are a reservoir for relapse and resistance, it is
crucial to continue to investigate these differences and

identify new treatments that can specifically target LSCs
without causing inappropriate damage to normal HSCs
at the same time. Much of our understanding of LSC
metabolism has only begun to appear within the last
decade, making this an active and developing area of re-
search that promises to lead to even greater improve-
ments in the treatment of AML. When this knowledge is
leveraged and these treatment gaps are filled, long-term
remission will become commonplace and the promise of
effective AML treatments will finally be fulfilled.

Table 2 Mitochondria-targeted chemotherapeutics (mitocans) in synergistic combinations against AML (Continued)

N Drug combination Targets/inhibition
related to
mitochondria

AML subgroup if applicable Level 1:
preclinical
(in vitro,
PDX)

Level 2: clinical
trials/studies in
AML patients

6.1.1 Bafilomycin A1 + cytarabine Autophagy, ROS
production, MMP,
mtDNA

AML [266] –

6.1.2 Chloroquine + cytarabine

6.1.3 Hydroxychloroquine + cytarabine [267, 268]

6.2 Hydroxychloroquine +
mitoxanthrone + etoposide

Autophagy, mtDNA R/R AML Phase I
(NCT02631252)

6.3 Chloroquine + arginase Autophagy, arginine
depletion

AML [269] –

6.4 Chloroquine + HDACi (valproic
acid/ vorinostat)

Autophagy,
accumulation of
ubiquitinated proteins

t(8;21)-mutated AML [270] –

6.5 ROC-325 + azacitidine Autophagy AML [271] –

6.6.1 SBI-0206965 + cytarabine ULK1 (autophagy), ROS
production, DNA
damage, mtDNA/Bcl-2

AML [272, 273] –

6.6.2 SBI-0206965 + venetoclax

6.6.3 SBI-0206965 + daunorubicin [274]

6.7.1 JQ1 + daunorubicin BET-bromodomain
proteins (S100A8/9,
BRD4), mtDNA

AML [275] –

6.7.2 JQ1 + cytarabine [276]

6.8 Birabresib + venetoclax BET-bromodomain
proteins, Bcl-2

AML [277] –

6.9 LCL-461 + FLT3-inhibitor crenolanib Activation of ceramide-
dependent mitophagy

AML with FL3-ITD mutation [163] –

6.10 TAK-165 + FLT3-inhibitor AC220 Autophagy AML with FL3-ITD mutation [278] –

6.11 Petromurin C + FLT3-inhibitor
gilteritinib

Induction of early
autophagy and
apoptosis, Mcl1

AML with FL3-ITD mutation [279] –

7. Combinations targeting mitochondria-related miRNAs

7.1 miR-181a/b mimics + doxorubicin/
daunorubicin/cytarabine

Mcl1, Bcl-2, mtDNA AML [280–282] –

7.2 miR-15a/16-1 mimic + arsenic
trioxide

UCP2, MMP,
cytochrome c release,
ROS production

AML [283] –

7.3 miR-9 mimic + daunorubicin EIF5A2, Mcl1, mtDNA AML [284] –

7.4.1 miR-29b mimic + cytarabine Mcl1, mtDNA AML [285] –

7.4.2 miR-29b mimic + decitabine [286]

7.5 Antisense miR-32 + cytarabine Bim upregulation,
mtDNA

AML [287] –
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