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Mitochondrial reactive oxygen species and cancer
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Abstract

Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity.
While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift has shown
that mROS can act as signaling molecules to activate pro-growth responses. Cancer cells have long been observed
to have increased production of ROS relative to normal cells, although the implications of this increase were not
always clear. This is especially interesting considering cancer cells often also induce expression of antioxidant
proteins. Here, we discuss how cancer-associated mutations and microenvironments can increase production of
mROS, which can lead to activation of tumorigenic signaling and metabolic reprogramming. This tumorigenic
signaling also increases expression of antioxidant proteins to balance the high production of ROS to maintain
redox homeostasis. We also discuss how cancer-specific modifications to ROS and antioxidants may be targeted
for therapy.
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Introduction
Mitochondrial-derived reactive oxygen species (mROS)
have increasingly been appreciated to function as signaling
molecules that modify cellular physiology. Increased pro-
duction of ROS has long been observed to be a hallmark
of many tumors and cancer cell lines [1]. Early investiga-
tions showed that ROS are capable of damaging proteins,
lipids, and DNA, and thus it was believed that ROS can be
tumorigenic by promoting genomic instability [2]. While
high levels of ROS can promote DNA mutations and
genetic instability, over the last 20 years a more nuanced
view of the role of ROS in cancer has come to light. Spe-
cifically, cancer cells generate increased ROS; however,
these ROS levels are still below that which cause overt
damage. This range of ROS is capable of increasing
tumorigenesis by activating signaling pathways that regu-
late cellular proliferation, metabolic alterations, and angio-
genesis. Here, we will focus on the mechanisms of how
mROS impact cellular physiology in cancer and the path-
ways by which cancer cells increase mROS.
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Reactive oxygen species
The term reactive oxygen species covers several molecules
derived from oxygen that have accepted extra electrons
and can oxidize other molecules [3]. Most intracellular
ROS are derived from the single electron reduction of
oxygen (O2) to form the radical superoxide (O2

·−). Two
superoxide molecules can then be converted to one mol-
ecule of the non-radical ROS molecule hydrogen peroxide
(H2O2) and one water molecule by superoxide dismutases.
Hydrogen peroxide can also accept another electron from
free Fe2+ by the Fenton reaction to become a hydroxyl
radical (HO·). These three primary forms of ROS have dif-
ferent reactivities that can lead to differential effects on
cellular physiology (Figure 1).
Seminal studies in the 1990s demonstrated that the

primary signaling ROS molecule is hydrogen peroxide,
which can act by inactivating phosphatases to allow for
growth factor-dependent signaling [4,5]. Hydrogen
peroxide has the capacity to cross membranes and is
significantly more stable than the radical ROS mole-
cules. These attributes allow hydrogen peroxide to en-
counter susceptible residues on target molecules and
display selectivity. One understood mechanism of
hydrogen peroxide signaling is through the oxidation
of cysteine residues on proteins. Cysteine residues exist
in equilibrium between the protonated thiol (Cys-SH)
and thiolate anion (Cys-S−) forms. Thiolate forms of
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Figure 1 Production and interconversion of reactive oxygen species. O2
·− is formed from molecular O2 by gaining a single electron from a NADPH

oxidase (NOX) enzyme or from electron leak in the electron transport chain of the mitochondria. Superoxide dismutase (SOD) enzymes convert
two superoxide molecules into a H2O2 and a water (H2O) molecule. Hydrogen peroxide can undergo Fenton chemistry with Fe2+ to form HO·,
which is extremely reactive and can cause cellular damage. Hydrogen peroxide can also modify redox-sensitive cysteine residues to change
cellular signaling. Alternatively, hydrogen peroxide can be reduced to water by glutathione peroxidases (GPXs), peroxiredoxins (PRXs), or catalase.
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cysteine are more susceptible to oxidation by hydrogen
peroxide to form a sulfenic acid (Cys-SOH) residue [6].
In regulatory cysteine residues this can cause allosteric
changes within the protein to modify activity or bind-
ing partners. Alternatively, oxidation of active site
cysteines can inhibit activity and thus change signal-
ing cascades. The likelihood of cysteine oxidation of a
given protein is a combination of solvent accessibility,
local hydrogen peroxide concentration, and cysteine
pKa [7]. While hydrogen peroxide is the best described
signaling ROS molecule, roles for superoxide as an inde-
pendent signaling molecule have also been described [8].
In addition, other reactive oxidants such as peroxynitrite
(ONOO−) can form from a reaction between superoxide
and nitric oxide (·NO). These reactive nitrogen species
likely have both overlapping and distinct mechanisms of
mediating signaling changes with ROS since they are
capable of both oxidizing and nitrating intracellular
amino acids. Hydroxyl radicals likely do not play a sig-
naling role since they are generally too reactive to dis-
play selectivity in reaction targets.

Sources of reactive oxygen species One major source of
intracellular ROS is the NADPH oxidases. NADPH
oxidases catalyze the production of superoxide from
O2 and NADPH. These enzymes were originally de-
scribed in phagocytes, where they were shown to kill
engulfed pathogens by creating locally high levels of
oxidative stress [9]. Since this discovery, it has been
observed that NADPH oxidase family members are
present in many tissues in the body where they are im-
portant for non-immune functions as well [10,11]. The
presence of enzymes that specifically produce ROS
validates the model that ROS serve a controlled func-
tion in the cell, rather than simply acting as toxic by-
products. In addition, oncogenes can stimulate NADPH
oxidase-dependent ROS production, which has been
shown to be necessary for cell proliferation [12]. NADPH
oxidases have been detected to be intracellularly localized
to many organelles including the plasma membrane,
nucleus, mitochondria, and endoplasmic reticulum. Inter-
estingly, the endoplasmic reticulum has recently also been
shown to also have NADPH oxidase-independent produc-
tion of ROS as well [13]. While NADPH oxidases are
well-described sources of intracellular ROS, when pos-
sible, this review will focus on the mechanisms and conse-
quences of mitochondrial-derived ROS.
The largest contributor to cellular ROS is the mitochon-

dria. It has been estimated that as much as 1% of the total
mitochondrial O2 consumption is used to produce super-
oxide [14,15]. The mitochondria have eight known sites
that are capable of producing superoxide [16,17]. The
relative contribution of each of these sites to the total cel-
lular ROS is unclear, however, ROS from complex I, II, and
III have all been shown to have effects on cellular signaling
[16]. Interestingly, while complexes I and II release ROS into
the mitochondrial matrix, complex III has the ability to
release ROS to both sides of the mitochondrial inner mem-
brane [18]. Theoretically, releasing ROS to the inner mem-
brane space would allow easier access to cytosolic targets.
Consistent with this hypothesis, complex III-derived ROS
have specifically been shown to be required for many bio-
logical processes including oxygen sensing, cell differenti-
ation, and adaptive immunity [19]. Whether the other
sources of mROS have individual or simply contributory
roles to the total mROS signaling is unknown.
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Antioxidant pathways balance ROS levels Considering
that mROS can modify proteins, regulation of the con-
centration of mROS is crucial for its ability to act as a
signaling molecule. Levels of mROS are controlled both
at the level of production (discussed below) and by deg-
radation. The SOD proteins (SOD1-3) first convert two
superoxide molecules into hydrogen peroxide and water,
removing one reactive oxygen species per cycle. Hydro-
gen peroxide is then further reduced to water by a host
of antioxidant enzymes including six PRXs, eight GPXs,
and catalase in mammalian cells. PRXs are among the
most abundant proteins in cells and have been calcu-
lated to degrade most of the intracellular hydrogen per-
oxide [20,21]. GPXs also are highly active, although less
abundant, and may be an important antioxidant mech-
anism at higher concentrations of hydrogen peroxide [22].
In the context of ROS signaling, there is accumulating
evidence that antioxidant enzymes may be modified in
complex ways to facilitate specific ROS signaling events.
For example, in response to growth factor signaling
membrane-bound PRX1 can be phosphorylated to inhibit
degradation of hydrogen peroxide. This results in localized
accumulation of hydrogen peroxide and increased growth
factor signaling [23]. Similarly, GPX1 activity can be in-
creased by phosphorylation by c-Abl and Arg to protect
against high levels of oxidative stress [24]. These exam-
ples, as well as the high number of PRXs and GPXs, sug-
gest that the regulation of ROS by antioxidant enzymes
may be much more intricate than simply constitutive
degradation activity.
The predominant transcriptional response that increases

the production of antioxidant proteins in cancer cells is
through the activation of nuclear factor (erythroid-derived
2)-like 2 (NRF2) [25]. Stabilization of the labile transcrip-
tion factor NRF2 by inhibition of its negative regulator
Kelch-like ECH-associated protein 1 (KEAP1) allows it to
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Figure 2 Balancing ROS generation and ROS scavenging allows cance
Activation of mitochondrial ROS generation by oncogenes, mitochondrial m
increase tumorigenicity. Tumor cells also express enhanced levels of antio
levels incompatible with growth.
increase expression of antioxidants including GPXs and
glutathione synthesis and utilization genes [26,27]. One
mechanism of NRF2 stabilization is by ROS-mediated
oxidation of sensitive cysteine residues on KEAP1 [28-30].
While increased ROS is a common feature in cancer
cells, NRF2 has also been shown to be essential for
tumorigenesis [31,32]. It is thus likely that the require-
ment for NRF2 controls ROS levels in cancer cells to
maintain homeostasis. Interestingly, while NRF2 loss
inhibited tumor formation, mice deficient for the anti-
oxidant PRX1 have increased ROS and display decreased
life span due to hemolytic anemia and development of
malignant cancers [33]. Thus, small molecule increases in
ROS as a result of removing a single component of the
antioxidant response may increase tumorigenesis while
complete loss of the antioxidant response pathway,
such as in NRF2 knockout mice, results in prohibitively
high levels of ROS and decreases tumorigenesis. The
distinction between small changes in ROS that promote
tumorigenic signaling vs. large changes in ROS that
cause oxidative stress to induce cell death is an import-
ant factor that will dictate the response to ROS stimuli
(Figure 2).
Mitochondrial reactive oxygen species regulate signaling
pathways

ROS enhance phosphoinositide 3-kinase signaling The
phosphoinositide 3-kinase (PI3K) pathway is a central
growth factor response pathway that is hyper-activated
in many cancers. Activation of this pathway has been
shown to increase proliferation, promote survival, and
increase cellular mobility [34]. Upon growth factor stimu-
lation, growth factor receptors activate the catalytic sub-
unit of PI3K, p110, through Ras activation or recruitment
of the regulatory subunit, p85. Once activated, p110
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phosphorylates phosphoinositides (PI) to generate PI
(3, 4, 5) P3 (PIP3). PIP3 acts as a signaling lipid by
binding to the pleckstrin homology (PH) domain of
Akt, causing its localization to the plasma membrane.
Akt is then activated by phosphorylation from another
PH domain-containing kinase, phosphoinositide-dependent
kinase-1 (PDK1). Activation of Akt is an important me-
diator of the PI3K pathway and leads to increased cell
proliferation and suppression of apoptosis. The negative
regulator of this pathway, phosphatase and tensin
homolog deleted on chromosome ten (PTEN), has con-
stitutive phosphatase activity on PIP3 to convert it to
the inactive form, PIP2.
The intracellular level of ROS can affect the PI3K

pathway. Treatment of cells with exogenous hydrogen
peroxide is sufficient to activate Akt [35]. The primary
known ROS target in the PI3K pathway is PTEN. ROS
have been shown to oxidize the active site cysteine on
PTEN (Cys124) resulting in a disulfide formation to an-
other intraprotein cysteine (Cys71). This results in in-
activation of PTEN and perpetual activation of the PI3K
pathway [36,37]. In addition to general ROS effects,
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Figure 3 Reactive oxygen species modify cellular signaling. Hydrogen pe
PI3K pathway, the hypoxia-inducible factor (HIF) pathway, and metabolic ad
growth, and proliferation fundamental to tumorigenesis.
mROS were specifically shown to inhibit PTEN and acti-
vate Akt [38,39]. Aside from PTEN, ROS have been
shown to inhibit other phosphatases, including protein
phosphatase 2A (PP2A) and protein tyrosine phosphatase
1B (PTP1B) [40]. PP2A dephosphorylates Akt on
threonine 308 and serine 493 resulting in Akt inactiva-
tion; however, PP2A dephosphorylation activity is inhib-
ited by hydrogen peroxide [41]. PTP1B also suppresses
Akt activity by dephosphorylation but, like PP2A, ROS in-
hibit PTP1B activity and increase Akt activity resulting in
increased anchorage-independent growth [42,43]. Thus,
ROS inhibit phosphatases to dysregulate PI3K signaling
resulting in increased Akt signaling and enhanced prolifer-
ation and survival (Figure 3).

Mitochondrial ROS activate hypoxia-inducible factors
One of the best characterized pathways shown to be
responsive to mROS is the hypoxia-response pathway.
Hypoxia is a prominent feature of tumor cells in vivo
due to a mismatch between the high proliferative rate of
tumor cells and the ability of the blood supply to provide
nutrients including oxygen. Tumor cells activate hypoxia
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inducible factors (HIFs) to activate a transcriptional net-
work to allow tumor cells to adapt to their diminished
oxygen microenvironment. The pathway consists of
three hypoxia-sensitive α subunits (HIF1α, HIF2α, and
HIF3α) that, upon activation, heterodimerize with the
constitutively expressed HIF1β and activate transcription
from hypoxia-response elements (HREs) [44]. Under nor-
moxic conditions (21% O2), HIFα subunits are rapidly hy-
droxylated on proline residues by prolyl hydroxylase
domain-containing protein 2 (PHD2) which is recognized
and targeted for degradation by the von Hippel-Lindau
(VHL) E3 ubiquitin ligase pathway [45]. When cells are ex-
posed to hypoxia, PHD2 hydroxylation of HIFα subunits
is inhibited leading to HIFα accumulation, heterodi-
merization, and translocation to the nucleus. The HIF
heterodimer interacts with the co-activators p300 and
CBP to initiate transcription of hypoxia-response genes
from HREs. Appropriately for cells under hypoxia, tran-
scriptional targets of HIFs include genes that promote
survival under hypoxia, shift metabolism to increased
glycolysis, and activate angiogenesis [46].
Exposure to hypoxia increases mROS to stabilize HIFα

subunits. Initial evidence for this mechanism stems from
the observation that cells depleted of their mitochondrial
DNA (ρ0 cells) are incapable of stabilizing HIFα subunits
under hypoxia [47]. ρ0 cells do not exhibit mitochondrial
oxygen consumption and do not produce mROS [48]. In
addition, treatment of mitochondria-replete cells with the
electron transport chain (ETC) inhibitors rotenone,
myxothiazol, and stigmatellin can inhibit mROS pro-
duction and inhibit stabilization of HIFα subunits
under hypoxia [49]. In contrast, the ETC inhibitor anti-
mycin A increases mROS and leads to increased HIFα
stabilization. Further studies have identified that hypoxia
increases the release of superoxide from complex III to
the mitochondrial intermembrane space [50]. In complex
III, electron transport is mediated by the Rieske-Fe-S
protein (RISP), cytochrome b, and cytochrome c1. While
the loss of RISP or cytochrome b eliminates mitochondrial
oxygen consumption, the loss of RISP eliminates mROS
production while the loss of cytochrome b retains mROS
production. Importantly, cells depleted of RISP are incap-
able of stabilizing HIFα under hypoxia, whereas cells de-
pleted of cytochrome b retain their ability to stabilize
HIFα [51-54]. This indicates that in hypoxia the increased
release of superoxide from complex III is responsible for
the inhibition of PHD2 and stabilization of HIFα subunits.
How these ROS inhibit PHD2 activity is not fully under-
stood, however, one possibility is that ROS oxidize intra-
cellular Fe2+, a cofactor required for PHD2 function [55].
Treatment of cells with mitochondrial-targeted antioxi-
dants blocks the release of mitochondrial ROS and in-
hibits the stabilization of HIFα subunits under hypoxia
[56]. Furthermore, a large chemical screen designed to
uncover inhibitors of hypoxic activation of HIFs enriched
for mitochondrial inhibitors of complex III [57]. Thus,
mROS are both sufficient and required for hypoxic activa-
tion of HIFs (Figure 3). Interestingly, suppression of
HIF1α by treatment with antioxidants has been shown to
inhibit cancer cell proliferation in vitro and in vivo [58,59].
Mitochondrial ROS modify metabolism The interplay
between ROS levels and cellular metabolism is tightly
regulated. Metabolic processes produce ROS, particu-
larly in the mitochondria, thus metabolic fluxes need
to be intimately controlled to maintain ROS homeo-
stasis. One important mechanism of metabolic control
is through HIF1α. Activation of HIF1α induces expres-
sion of glycolysis enzymes and transporters to increase
glycolytic flux, as well as increases expression of PDK1
to divert glycolytic carbon away from the mitochon-
dria [60]. In addition, HIF1α induction of NADH de-
hydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2
(NDUFA4L2) suppresses complex I activity and mROS
[61]. HIF1α has also been shown to induce microRNA-
210, which is sufficient to decrease expression of the iron-
sulfur cluster assembly proteins ISCU1/2 and decrease
mitochondrial oxygen consumption, increase lactate
production, and increase ROS [62,63]. Another method
by which ROS can modify metabolism is through acti-
vating NRF2. Activation of NRF2 increases synthesis of
anabolic enzymes and supports tumor growth by in-
creasing production of NADPH increasing and purine
biosynthesis [64]. ROS have also been shown to modify
metabolism directly by oxidizing the glycolytic enzyme
pyruvate kinase M2 (PKM2). In contrast to its constitu-
tively active splice isoform PKM1, PKM2 is preferen-
tially expressed in cancer cells and is unique due to its
ability to be inhibited by a variety of stimuli [65,66].
Interestingly, ROS have also been shown to inhibit
PKM2 activity by directly oxidizing a cysteine residue
on PKM2 [67]. Oxidation of this residue was shown to
cause increased pentose phosphate pathway flux, increase
glutathione levels, and increase proliferation under hyp-
oxia. Importantly, inhibition of pyruvate kinase activity has
been associated with increased tumorigenesis in vivo [68].
Cancer cells increase mitochondrial reactive oxygen species

Tumorigenic mutations increase mROS Many cancer
cells show increased levels of ROS, and the signaling
events and mutations that increase ROS is an area of
active research. Several oncogenes have been linked to
increased ROS production (Figure 4). Exogenous ex-
pression of H-RasG12V has been shown to increase
mitogenic activity of 3T3 fibroblasts, and this activity
was dependent on increased ROS [12]. In murine em-
bryonic fibroblasts (MEFs) immortalized by a dominant
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negative p53, expression of Myr-Akt, H-RasG12V, or
K-RasG12D conferred increased mROS-dependent
soft-agar colony formation [69]. In addition, deregulated
expression of Myc has also been shown to modify ROS
levels. Exogenous expression of Myc increased ROS pro-
duction, leading to the transformation in some cells, but
ROS induced apoptosis in others [70,71]. This suggests
that the ROS effects may be dependent on cell type, other
mutations, and expression level of the oncogene. Interest-
ingly, in mouse models of cancer, activation of physio-
logical expression of K-RasG12D, B-RafV619E, or Myc
suppressed steady state levels of ROS [31]. This suppres-
sion was shown to be mediated by induction of the NRF2
antioxidant program, and thus it is not clear if oncogenes
in this context modify the ROS production or simply
decrease steady state ROS by increased expression of
antioxidant proteins. Another possibility is that NRF2
expression suppresses the total cell ROS levels, but lo-
calized increases in compartmentalized ROS (such as
mROS) are maintained to promote tumorigenic signaling.
Several tumor suppressors have been shown to have

ROS inhibitory functions. The most common of them,
the tumor suppressor p53, known as ‘the guardian of the
genome’ is lost or mutated in approximately 50% of can-
cers [72]. Classically, it has been shown that in response
to telomere erosion, oncogene activation, or genotoxic
stress that activation of p53 suppresses cancer formation
by inducing apoptosis and senescence [73]. However, re-
cent evidence has shown that endogenous expression of
p53 with mutations that prevent its ability to cause cell
cycle arrest, apoptosis, or senescence still maintains its
tumor suppressive function [74]. Interestingly, this
mutated p53 retained its ability to control metabolic
homeostasis and suppress ROS. In addition, treatment
of xenografts with the antioxidant N-acetyl cysteine
(NAC) suppressed tumor growth in p53 null cancer
cells, but not p53 replete cells [75]. These data suggest
that p53-mediated tumor suppression may be, in part,
due to its ability to suppress ROS (Figure 4).
The sirtuins are a family of NAD+-dependent proteins

that have been linked to control of metabolic state and
cell signaling. Although disputable, several of the sirtuins,
including SirT1, SirT2, SirT3, and SirT6, have been impli-
cated to act as tumor suppressors [76]. SirT3, one of the
three mitochondrial sirtuins, modulates mitochondrial
function by deacetylation of proteins of the electron trans-
port chain, the tricarboxylic acid (TCA) cycle, and antioxi-
dant defense [77]. A survey of human tumors has shown
that SirT3 protein expression is significantly decreased in
tumors and deletion of at least one copy of SirT3 has been
observed in 20%–30% of cancers [78]. Loss of SirT3
expression by genetic knockout or small hairpin RNA
(shRNA) increased mROS, while overexpression of SirT3
suppressed mROS [78,79]. These changes in mROS by
SirT3 expression directly correlated with proliferation rate
of cancer cells in vitro and in vivo and could also be
modulated with antioxidants.

Mitochondrial mutations increase mROS Mutations
in mitochondrial DNA (mtDNA)-encoded ETC proteins
have been reported in a wide variety of human tumors
[80]. Considering cells contain thousands of copies of
mtDNA per cell, these mutations typically occur in only
a fraction of the total cellular mtDNA, a condition
known as heteroplasmy. Heteroplasmic mutations have
been observed to be enriched in tumors relative to nor-
mal tissue and have been implicated to confer a selective
advantage in tumorigenesis [81]. Heteroplasmic muta-
tions in complex I have been shown to increase mROS,
increase colony formation in soft agar, and increase
tumor formation in vivo [82]. Further, reconstitution of
complex I activity using the yeast complex I analog
NDI1 suppressed mROS, mROS-mediated activation of
Akt and HIF1α, and colony formation in soft agar [83].
Perhaps the strongest evidence for the role of hetero-
plasmic mutations in tumorigenesis comes from a study
in which the mtDNA from a poorly metastatic cell line
was switched with that of a highly metastatic cell line.
Upon acceptance of the new mtDNA, the recipient
tumor cells acquired the metastatic characteristics of the
opposite cell line [84]. Heteroplasmic mutations in the
complex I subunit NADH dehydrogenase subunit 6 (ND6)
were shown to increase metastatic potential through in-
creased mROS production and activation of HIF1α. Fur-
thermore, treatment of these cells with the antioxidant
NAC inhibited this activity. While relatively low levels of
heteroplasmic mutations (10%–60%) increase tumorigen-
esis, high level heteroplasmy or homoplasmic mutations in
mtDNA will likely become detrimental to metabolism and
thereby tumorigenicity upon sufficient loss. In support of
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this model, large levels of heteroplasmy sensitized cells
to growth inhibition under low glucose [85]. Cancer cells
with mitochondrial mutations resulting in homoplasmic
loss of complex I function were unable to form xenografts
[86]. In addition, loss of mitochondrial transcription factor
A (TFAM), a transcription factor required for mtDNA
replication, inhibited tumor formation in an in vivo
mouse model of K-Ras-driven lung cancer [69]. However,
heterozygosity for TFAM caused a mROS dependent in-
crease in intestinal tumorigenesis in an APCmin/+ mouse
model of cancer [87]. Thus, moderate amounts of
heteroplasmy may be beneficial for tumorigenesis by
increasing mROS while high heteroplasmic mutations
or homoplasmic mutations may inhibit tumorigenesis
by causing metabolic dysfunction (Figure 5).
Mutations in components of the nuclear-encoded

mitochondrial metabolic enzyme succinate dehydrogenase
(SDH) have been shown to lead to paraganglioma and
pheochromocytoma [88]. The SDH complex is comprised
of four subunits (SDHA, SDHB, SDHC, and SDHD) and
is the only TCA cycle enzyme that is also a component of
the ETC (complex II). Mutations in SDHB, SDHC, and
SDHD are commonly associated with cancer formation,
whereas mutations in SDHA are rarely associated. Inter-
estingly, given the structure and mechanism of complex
II, loss of SDHB, SDHC, and SDHD would allow for
acceptance of an electron, but not progression along
the ETC, and thus may increase ROS generation. In
support of this model, loss of SDHB, but not SDHA in-
creases mROS, HIF1α, and tumorigenicity [89]. In addition,
Tu
m

or
ig

en
ic

ity

Low ROS Production 

Mitochondrial biosynthetic 
capacity intact

High ROS

Mitochondri
capac

Figure 5 Heteroplasmic mutations in mitochondrial DNA increase tum
tumorigenicity by increasing mROS levels while maintaining mitochondrial
eventually compromise mitochondrial biosynthetic capacity and will decrea
mutations in SDHC are also been associated with increased
mROS and tumorigenesis [90]. Thus, loss of components
of the SDH complex may, in part, cause tumorigenesis by
increasing mROS levels.
In hereditary leiomyomatosis and renal cell cancer

(HLRCC), the loss of the TCA cycle enzyme fumarate
hydratase (FH) leads to accumulation of the metabolite
fumarate and renal cell cancer. FH-deficient cancer cells
display pseudo-hypoxia with aberrant activation of HIF1α.
Congruent with SDH mutations, this HIF1α activation
was also shown to be ROS dependent [91]. However, the
mechanism of ROS production is different than SDH
mutations. Intracellular thiolate residues on cysteines can
undergo a nucleophilic attack on the electrophilic alkene
bond of fumarate to produce a ‘succination’ modification
[92]. Accumulated fumarate in FH-deficient cells succi-
nates the thiol residue on the intracellular antioxidant
molecule glutathione to produce the metabolite succi-
nated glutathione (GSF) [93]. The metabolism of GSF
consumes NADPH, the primary reducing equivalent used
in ROS detoxification reactions. Thus, GSF reduces overall
NADPH antioxidant capacity resulting in increased mROS
and HIF1α stabilization. Interestingly, FH-null cancer cells
also display hyper-activation of the master antioxidant
transcription factor NRF2. While ROS have been shown
to stabilize NRF2, FH-deficient cancer cells primarily acti-
vate NRF2 by succination and inactivation of KEAP1
[93-95]. Depletion of NRF2 by shRNA in FH-null cells
further increased ROS, increased HIF1α stabilization,
and decreased proliferation, suggesting that NRF2 suppresses
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fumarate-mediated ROS to maintain a favorable homeostatic
level compatible with proliferation [93].
Targeting ROS for therapy

Suppressing ROS to inhibit proliferation ROS contrib-
ute to mitogenic signaling, and thus decreasing intracel-
lular ROS levels is an attractive method for inhibiting
cancer growth. With this in mind, several large-scale
studies have investigated whether supplementation with
antioxidant vitamins, including β-carotene and vitamin
A or vitamin E can reduce cancer risk in humans. Con-
trary to the expected result, supplementation increased
the risk of cancer in both cases [96,97]. In agreement
with these results, in genetic mouse models of K-Ras- or
B-Raf-induced lung cancer, treatment with NAC or vita-
min E markedly enhanced tumor growth and accelerated
mortality [98]. These results show that the potential use
of antioxidants for cancer therapy is complex and needs
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Figure 6 Targeting cancer cells by modifying ROS levels. Normal cells have d
cells. Loss of either ROS or antioxidants therefore causes only small change
since cancer cells have more ROS and antioxidants, they may be more susc
prevention of ROS generation will cause cells to lose sufficient ROS signalin
Alternatively, inhibition of antioxidants or increasing ROS generation will re
cell death.
to be carefully validated before being applied. One possi-
bility for the failure of these antioxidants as cancer treat-
ments is their lack of specificity. Treatment of patients
with general antioxidants may modulate many physio-
logical processes that are relevant to cancer growth. For
example, the immune system, an important modulator
of cancer growth, has been shown to be sensitive to ROS
levels [99]. Another possibility is that general antioxi-
dants are differentially effective than targeted antioxi-
dants. Mitochondrial-targeted versions of antioxidants
have been shown to be potent inhibitors of cancer cell
growth in vitro and in vivo [69,100]. Thus, further inves-
tigation needs to be considered to determine if targeted
antioxidants are a viable method to treat cancer.
Another approach for inhibiting ROS is to decrease

production. Decreasing mROS production necessarily
involves inhibition of the ETC and thus may not be a
practical due to toxicity inherent in inhibiting mitochon-
drial respiration. However, patients taking the antidiabetic
on 

Oxidative 
Cell Death

Cytostasis

n 

Homeostasis

Homeostasis

ecreased amounts of both ROS and antioxidants relative to cancer
s in ROS homeostasis, leaving cells viable and functional. However,
eptible to changes in ROS levels. Treatment with antioxidants or
g to maintain growth. The result is cytostasis and possibly senescence.
sult in excess ROS in cancer cells and cause cancer-specific oxidative
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drug metformin have recently been shown to have a re-
duced risk of cancer incidence and mortality [101].
Metformin has been shown to act as an inhibitor of
complex I of the ETC [102,103]. We recently used a
metformin insensitive complex I analog to confirm that
the anticancer effect of metformin is primarily medi-
ated by specific inhibition of complex I of cancer cells
in vivo [104]. Interestingly, we also observed that treat-
ment with metformin suppressed hypoxic activation of
HIF1α, indicating that it may also decrease production
of mROS under hypoxia. Whether this effect is important
for the cancer suppressive effects of metformin requires
further investigation. An alternative approach to decrease
ROS production is by inhibiting NADPH oxidases. Indeed,
loss of NADPH oxidase 4 has been shown to activate
apoptosis in pancreatic cancer cells [105]. In addition, in-
hibitors of NADPH oxidase activity have been shown to
have efficacy on mouse models of cancer in vivo [106,107].

Increasing ROS to selectively kill cancer cells Consid-
ering that cancer cells have increased ROS levels, they
may be selectively sensitive to the damaging effects of
further increasing ROS. Increasing ROS production spe-
cifically in cancer cells is likely difficult to accomplish,
although it is one proposed mechanism for how many
current chemotherapeutics function [108]. Alternatively,
since cancer cells frequently have increased expression
of antioxidants to maintain homeostasis, a promising
therapeutic approach is to inhibit antioxidants to expose
cancer cells to endogenously produced ROS [109]. In
support of this model, several small molecule screens
identifying compounds that specifically inhibit growth of
transformed cells have converged upon glutathione
utilization [110-112]. In all cases, treatment with the
identified small molecules decreased glutathione levels,
increased ROS, and could be rescued by treatment with
NAC. In addition, inhibition of antioxidant pathways has
also been shown to be effective for inhibiting cancer
growth. Genetic knockout of NRF2 inhibited disease
progression in mouse models of pancreatic and lung
cancer [31,32]. Inhibition of SOD1 by the small molecule
ATN-224 was shown to cause ROS-dependent cancer
cell death in vitro and decreased tumor burden in ad-
vanced K-Ras-driven lung cancers in vivo [113]. These
recent examples provide further proof of principle that
increasing ROS, whether by increasing production or
inhibiting antioxidants, is a promising approach for target-
ing cancer cells (Figure 6). Further research is warranted
to determine which components of the antioxidant path-
way are selectively essential for tumor growth.

Conclusions
It is becoming increasingly apparent that ROS play an
important role in the biology of tumorigenesis. While
several mechanisms have been presented here, the bulk
of ROS-mediated signaling targets are largely unknown.
However, the frequency of cancer-associated mutations
that increase ROS levels suggests that increased produc-
tion of ROS may be a common output of a large fraction
of cancer-associated mutations in oncogenes and tumor
suppressors. In addition, the apparent selection for mito-
chondrial mutations that increase ROS at the detriment
of metabolic flexibility suggests that ROS are strongly se-
lected for in these cancer cells. An emerging model is
that cancer cells increase the production of ROS to acti-
vate localized pro-tumorigenic signaling but balance the
increased ROS with elevated antioxidant activity to
maintain redox balance. As with all studies in cancer,
the final goal will be to design therapeutics that can take
advantage of these discoveries. Both the suppression of
ROS to prevent activation of pro-tumorigenic signaling
pathways and the exacerbation of ROS by disabling anti-
oxidants to induce cell death represent promising ap-
proaches in this regard. Future work is needed to better
understand ROS-targeted pathways. In addition, future
studies need to determine what sources of ROS and
what specific antioxidants are required for homeostasis.
With this knowledge, we can better understand cancer
biology and design novel therapeutics to specifically treat
cancer cells.
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