Skip to main content
Fig. 6 | Cancer & Metabolism

Fig. 6

From: A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin

Fig. 6

Distinct histone modifications differentially influence doxorubicin cytotoxicity. a Rpd3L and Rpd3S complexes exert strong HLEG-specific doxorubicin-enhancing influence relative to other Sin3-type histone deacetylases and the HDA1 complex. b In contrast to histone deacetylation (panel a), histone acetylation exhibits deletion enhancement that is Warburg-independent. c Histone H3K4 methylation by the Set1C/COMPASS complex, which requires histone mono-ubiquitination of H2B by the Bre1/Rad6 complex, is opposed by Jhd2, a histone H3K4 demethylase. The respiration-specific deletion-enhancing interactions suggest the Warburg transition can protect tumors promoted by certain types of chromatin deregulation from doxorubicin

Back to article page