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TIGAR, TIGAR, burning bright
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Abstract

Cancers cells shift their metabolism towards glycolysis in order to help them support the biosynthetic demands
necessary to sustain cell proliferation and growth, adapt to stress and avoid excessive reactive oxygen species
(ROS) accumulation. While the p53 tumor suppressor protein is known to inhibit cell growth by inducing apoptosis,
senescence and cell cycle arrest, recent studies have found that p53 is also able to influence cell metabolism. TIGAR
is a p53 target that functions as a fructose-2,6-bisphosphatase, thereby lowering glycolytic flux and promoting
antioxidant functions. By protecting cells from oxidative stress, TIGAR may mediate some of the tumor suppressor
activity of p53 but could also contribute to tumorigenesis. Here we discuss the activities of TIGAR described so far, and
the potential consequences of TIGAR expression on normal and tumor cells.
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Introduction
Cellular metabolism is a highly regulated process through
which cell growth and survival are maintained. Nutrient
availability promotes the production of biosynthetic
compounds for cell growth and proliferation whereas
starvation halts cell proliferation in order to conserve
energy and assist in cell survival [1]. Many cancer cells
shift their metabolism towards glycolysis - even under
aerobic conditions - in order to provide a rapid production
of energy and allow for the diversion of metabolic inter-
mediates into anabolic pathways, as well as helping in
the adaptation to challenging microenvironments. This
increase in aerobic glycolysis is also known as the Warburg
effect [2].
Alterations in metabolic pathways have been shown to

play a role in tumorigenesis, with mutations as well as
changes in the expression of metabolic enzymes contribut-
ing to metabolic transformation [3]. Activated oncogenes
or the loss or inhibition of tumor suppressor proteins also
directly influence cancer cell metabolism and cancer
cell growth [4]. Oncogenic KRas, for example, enhances
the flux of glycolytic intermediates to support anabolism
[5] as well as influencing the transcriptional regulation
of metabolic enzymes involved in glutamine metabolism
[6]. Moreover, Ras-transformed cells can stimulate macro-
pinocytosis in order to take up extracellular proteins and
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provide amino acids for central carbon metabolism [7].
The transcription factor MYC directly activates genes
involved in glucose metabolism [8,9] as well as those
involved in glutamine metabolism such as glutaminase
and glutamine transporters [10,11]. Hypoxia-inducible
factor-1 (HIF-1), the major transcription factor involved in
regulating the adaption of cells to hypoxic conditions, also
regulates the expression of many glycolytic genes [12]
and can be activated in cancers even under normoxic
(or pseudohypoxic) conditions in response to oncogenic
signaling pathways or mutations in tumor suppressor
proteins [13,14]. Cancers frequently show increased
PI3K-Akt growth signaling and enhanced mammalian
target of rapamycin (mTOR) activity. mTOR plays a
central role in cellular metabolism by regulating growth-
related processes such as protein synthesis, transcription
and nutrient uptake, as well as autophagy, in response to
changes in cellular nutrient and energy homeostasis. Many
oncogenic events converge on the regulation of mTOR,
including the loss of tumor suppressors such as PTEN
[15], TSC1/TSC2 and LKB1 [16].
Oncogene activation, deregulated proliferation and

altered metabolic activity in cancer cells can all generate
increased levels of reactive oxygen species (ROS) [3,17].
While low levels of ROS can help to promote cell prolifer-
ation, oncogenic transformation promotes the production
of excessive ROS, which would become toxic if not coun-
teracted. Therefore, many cancer cells show an increased
expression of antioxidant proteins such as Nrf2 [18,19],
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which contribute to the survival and success of the tumor.
Indeed, this dependence on antioxidants may make cancer
cells more vulnerable to the inhibition of these detoxifying
systems than normal cells, which do not carry such a high
burden of oxidative stress [20-22].

p53 and cancer metabolism
The p53 tumor suppressor protein functions as a tran-
scription factor and can initiate various cellular responses,
including cell cycle arrest, senescence and apoptosis [23].
However, recent studies have suggested that none of these
activities are essential to protect from cancer development
[24], raising the possibility that other p53 functions are
important for limiting tumorigenesis. Interest has now
turned to the more recently described activities of p53 in
regulating metabolism and allowing cells to adapt to and
survive modest or transient periods of metabolic stress
[25]. These survival activities of p53 have been linked with
the promotion of catabolic pathways such as fatty acid
oxidation and autophagy, which may provide alternative
energy sources during starvation [26]. In addition, numer-
ous activities of p53 that assist in limiting ROS and
oxidative stress through the induction of target genes
such as the tumor protein p53-induced nuclear protein 1
(TP53INP1) [27], glutaminase 2 (GLS2) [28,29], manga-
nese superoxide dismutase (MnSOD) [30] and the sestrin
family of proteins [31] also contribute to cell survival. It is
not clear at present how, or even whether, these activities
of p53 help prevent tumor development, although an
ability to limit the accumulation of potentially oncogenic
damage may be an important factor.
In contrast to its survival activity, the ability of p53 to

induce senescence or cell death has been associated
with an ability to induce oxidative stress. Several p53-
inducible pro-oxidant genes have been described, and
p53 can also limit the production of nicotinamide adenine
dinucleotide phosphate (NADPH), which provides the
major reducing power in cells in the form of reduced
glutathione, by directly inhibiting the activity of glucose-6-
phosphate dehydrogenase (G6PDH) [32] and repressing
the expression of malic enzymes [33]. The anti- and
pro-oxidant functions of p53 seem to mirror the ability
to promote either survival or death - a complexity of
the p53 response that is not fully understood. Current
models suggest that these opposing functions of p53
reflect different roles in response to low or transient
stress (where p53 protects cells and helps them survive
and repair) and high or persistent stress (where p53
drives the elimination of the damaged cell) [34]. p53 is
also activated by oxidative stress, resulting in protection
from or exacerbation of damage through ROS, depending
on the response. More recently, oxidative stress has
been shown to drive the accumulation of p53 in the
mitochondrial matrix, triggering the opening of the
mitochondrial permeability transition pore (PTP) through
interaction with the PTP regulator cyclophilin D, leading
to mitochondrial rupture and necrosis [35].
p53 therefore plays a complex but important role in

the regulation of several metabolic pathways. Much like
other cellular stress signals, metabolic stress can also
activate p53. The activation of AMPK during low energy
levels can lead to the induction of p53 activity [36] and
PI3K-Akt growth signaling can inhibit p53 by activating
MDM2 to promote the degradation of p53 [37]. While
mTOR signaling inhibits p53 by promoting its dephos-
phorylation [38], a loss of the negative regulators of
mTOR - and therefore, constitutive mTOR activity – can
also promote p53 activity by enhancing translation [39].
Malate dehydrogenase has also been found to bind and
activate p53 to mediate cell cycle arrest and apoptosis
in response to glucose deprivation [40].
One important role of p53 that is beginning to emerge

is its ability to help regulate the balance between glycolysis
and oxidative phosphorylation. ATP and ADP can directly
alter p53 activity, with ADP promoting and ATP inhibiting
the ability of p53 to bind DNA [41]. p53 counteracts
the elevation of glycolytic flux observed in cancer cells
through inhibiting the expression of glucose transporters,
GLUT1 and GLUT4 [42], as well as decreasing the
levels of phosphoglycerate mutase 1 (PGAM1), the enzyme
responsible for the conversion of 3-phosphoglycerate to
2-phosphoglycerate during glycolysis [43]. p53 can also
promote oxidative phosphorylation through the activation
of genes such as synthesis of cytochrome c oxidase 2
(SCO2) to increase mitochondrial respiration [44], as well
as promote glutamine utilization through the activation
of GLS2 [28,29]. Taken together, it would seem that
p53 balances metabolic flux to allow for efficient energy
production while blocking anabolic pathways necessary
for cell growth. Indeed, loss of p53 has been suggested
to be one of the mechanisms that contribute to the
acquisition of the Warburg phenotype.
p53 also plays a role in preserving mitochondrial

health with several activities likely to contribute to the
maintenance of mitochondrial integrity. These include
the induction of genes such as the ribonucleotide reductase
subunit p53R2 [45-47], whose activity is required for the
stability of mitochondrial DNA and the ability of p53 to
contribute to the removal of damaged mitochondria
[48,49]. While these results suggest that p53 helps to
maintain mitochondrial quality, other studies have also
demonstrated a role for p53 in the inhibition of mitophagy,
an effect that would lead to increased mitochondrial
dysfunction [50-52].
There have been many reviews of the role of p53 in

regulating metabolic pathways, reflecting the complex
interplay between p53-mediated responses that promote
cell survival and those that induce cell death [53]. Here we
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will focus on one aspect of the p53 response: the induction
of TIGAR. Of note, it has recently become clear that the
expression and activity of TIGAR can be uncoupled from
the p53 response and the contribution of TIGAR to
cancer development may depend on the manner by
which it is regulated.

TIGAR: a fructose-2,6-bisphosphatase
TIGAR (TP53-induced glycolysis and apoptosis regulator)
was discovered through microarray analysis of gene
expression following the activation of p53 [54,55]. The
human TIGAR gene is located on chromosome 12p13-3
and contains six coding exons and two p53 binding sites,
one upstream of the first exon (BS1) and one within
the first intron (BS2). Of the two sites, BS2 is much
more efficient in binding p53. In the mouse genome,
Tigar shows a similar genomic organisation but only
possesses one p53 binding site, located upstream of the
first exon. TIGAR is highly conserved through vertebrate
species and shares similarities with the glycolytic enzyme
phosphofructokinase-2/fructose-2,6-bisphosphatase (PFK-
2/FBPase-2) [55].
PFK-2/FBPase-2 is a bifunctional protein containing a

kinase domain within the NH2-terminus and a bispho-
sphatase domain at the COOH-terminus. These two
enzymatic activities are regulated through the formation
of a dimer stabilized by interactions at the kinase domain
[56]. Four different genes encode the PFK-2/FBPase-2
family of enzymes, PFKFB1 to PFKFB4. While their cata-
lytic domains are highly conserved, there are notable
differences between different isoforms, including tissue
specificity and preferential catalytic activity [57]. More-
over, cells have been shown to co-express different
PFK-2/FBPase-2 isoforms, suggesting they each have
distinct functions [58]. Both the expression and activity
of PFK-2/FBPase-2 can be regulated by hormones and
metabolites [59,60].
Notably, TIGAR only shares similarities with the bispho-

sphatase domain of PFK-2/FBPase-2 [55], with clear
structural similarities despite limited amino acid conserva-
tion [55,61]. Thus, TIGAR, like FBPase-2, acts to degrade
intracellular fructose-2,6-bisphosphate (F-2,6-P2), which is
a powerful allosteric activator of phosphofructokinase-1
(PFK-1). PFK-1 catalyses the conversion of fructose-6-
phosphate (F-6-P) to fructose-1,6-bisphosphate (F-1,6-P2)
and in doing so, drives glycolysis. In addition, F-2,6-P2 also
acts as an inhibitor of fructose-1,6-bisphosphatase (FBP1)
[62], which opposes the activity of PFK-1 by converting
fructose-1,6-bisphosphate to fructose-6-phosphate.
By lowering F-2,6-P2 levels, TIGAR decreases the activity

of PFK-1 and reduces glycolytic flux downstream of this
point. Several studies have shown that depletion of TIGAR
results in increased levels of F-2,6-P2 and increased flux
through glycolysis [55,63,64], consistent with a model
in which the expression of TIGAR results in a dampening,
rather than a complete inhibition, of the pathway. A
number of consequences of TIGAR activity can therefore
be predicted, including a diversion of the glycolytic
metabolites to alternative metabolic fates, such as the
hexosamine pathway to support glycosylation and the
oxidative or non-oxidative branches of the pentose
phosphate pathway (PPP) (Figure 1). The PPP plays a key
role in generating ribose-5-phosphate to be used as
an intermediate in nucleotide synthesis. Furthermore,
the oxidative arm of the PPP allows for the production
of NADPH, which supports antioxidant function and
is required for anabolic pathways such as fatty acid
synthesis (Figure 1).

The antioxidant activities of TIGAR
A dampening of glycolytic flux, either through the regula-
tion of F-2,6-P2 levels [65], glycosylation of PFK-1 [66], or
ROS-induced inhibition of the M2 isoform of pyruvate
kinase (PKM2) [67], has been shown to lead to an eleva-
tion of NADPH and antioxidant activity, which reflects an
increase in the PPP. By analogy, the FBPase-2 activity of
TIGAR should result in a similar response and a number
of studies have shown that the downregulation of TIGAR
is associated with decreased levels of NADPH [68-70],
lower levels of reduced glutathione [55,69,71] and, conse-
quently, an increase in ROS [72].
However, the antioxidant effect of TIGAR appears to

reflect more than just its FBPase-2 activity. During hyp-
oxia, a fraction of TIGAR was found to relocalise to the
mitochondria and associate with hexokinase 2 (HK2),
resulting in enhanced HK2 activity, lower mitochondrial
membrane potential and decreased ROS [73]. This activity
displays some similarity to PFK-2/FBPase-2, where the
FBPase-2 domain is able to bind and activate glucokinase
(also known as hexokinase 4) [74,75]. Low oxygen avail-
ability can influence many cellular responses associated
with tumor development, including angiogenesis and
metastasis. In particular, hypoxia can regulate the metabolic
activity of cells and induce glycolysis through the activation
of HIF-1, which controls the expression of many metabolic
enzymes, including PFKFB3 and PFKFB4 [76-78]. Notably,
mutant TIGAR protein lacking FBPase-2 activity retains
the ability to bind and enhance HK2 activity and the
full antioxidant function of TIGAR under low-oxygen
conditions depends on both HK2 binding and catalytic
activity [73,79].

TIGAR under stress
The consequences of TIGAR expression on glycolysis and
ROS regulation can depend, in part, on cell type and
context. For example, cytokine-dependent lymphoid cells
showed a decreased growth in response to TIGAR expres-
sion, possibly in response to decreased glycolysis [55],



Figure 1 TIGAR functions as a fructose-2,6-bisphosphatase. Schematic of glycolysis, the pentose phosphate pathway (PPP) and the hexosamine
pathway. TIGAR is predicted to promote both the PPP and hexosamine pathways by lowering the levels of fructose-2,6-bisphosphate and redirecting
glycolytic intermediates.
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and TIGAR was found to contribute to cell death in
cardiac myocytes, an outcome that is also linked to a
decrease in glycolysis [63]. However, in most cells where
TIGAR functions to limit ROS, the effect of TIGAR
expression was closely associated with protection against
ROS-induced cell death [55,69-71,80]. More confusing is
the association of TIGAR with senescence, where loss of
TIGAR can induce senescence in glioblastoma cells [64]
but can also inhibit this process in adult T-cell leukaemia
cells [81].
A clearer understanding of the physiological role of

TIGAR can be provided by the analysis of the role of
TIGAR in vivo (Figure 2). Unlike many metabolic enzymes,
which are essential for normal development [82,83],
TIGAR deficient mice showed no profound develop-
mental defect [79]. However, these mice have revealed
Figure 2 Understanding the role of TIGAR in vivo. Loss of TIGAR results
changes in response to stress [51,79].
a role for TIGAR in the response to various forms of
stress, such as cancer and heart failure.
Cardiac myocytes are known to undergo cell death fol-

lowing ischaemia-reperfusion injury, where greater tissue
damage occurs due to the return of oxygenated blood
following an ischaemic period, resulting in inflammation
and oxidative stress. Both p53 and TIGAR protein ex-
pression are induced after myocardial infarction surgery,
and both have been linked to an increase in apoptosis
due to a decrease in glycolysis, resulting in decreased levels
of phosphocreatine (a high energy phosphate important
in tissues, such as muscles, with high fluctuating energy
demands) [63]. In addition, the role of p53 and TIGAR
following cardiac damage was also suggested to be due
to their ability to inhibit autophagy, particularly in the
form of mitophagy. p53- or TIGAR-deficient animals
in reactive oxygen species (ROS) accumulation and tissue-dependent
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were able to increase mitophagy after cardiac injury to
reduce the number of damaged mitochondria and, hence,
showed increased recovery in these tissues. In this case,
the increase of ROS, due to the lack of TIGAR, functions
as a signal to increase Bnip3 expression, resulting in an
increase in mitophagy [51]. While a role for p53 in me-
diating adverse pathologies through the induction of
cell death has been suggested in several diseases such
as diabetes and ischaemia, protection due to a lack of
TIGAR in this response is unanticipated [51,63].
More consistent with the antioxidant functions of

TIGAR as protective for cell survival, as described in vitro,
is the role of TIGAR in promoting recovery from stress-
induced damage during intestinal tissue regeneration.
Following ablation of the intestinal epithelium through
whole body irradiation or genotoxic stress, mice deficient
for TIGAR showed reduced regenerative capacity in their
intestinal crypts [79]. Similarly, in a model of ulcerative
colitis in the colon [84], mice that were deficient for
TIGAR showed poorer recovery. As seen in cultured
cells, a loss of TIGAR expression was accompanied by an
increase in ROS. A lack of TIGAR compromised the abil-
ity of cells to undergo proliferation in order to regenerate
the intestinal epithelium after ablation [79]. Further inves-
tigation using an in vitro intestinal crypt culture model
[85] showed that organoids lacking TIGAR are less able to
form crypt structures in a three-dimensional tissue culture
model. These defects in TIGAR−/− cells could be rescued
following the addition of nucleosides or the antioxidant
N-acetyl L-cysteine (NAC), suggesting that TIGAR acts
to provide antioxidants and precursors for nucleic acid
synthesis for intestinal growth [79].

TIGAR in cancer
The remodelling of metabolic pathways to help the control
of redox homeostasis and provide intermediates needed
for cell growth is of particular importance in tumor de-
velopment. The identification of TIGAR as a p53 target
gene indicates some role in tumor suppression, and the
antioxidant functions of TIGAR would be consistent
with a role in the protective p53 response to transient
or repairable stress. Indeed, while TIGAR is induced
during the early stages of a p53 response, a fall in TIGAR
protein levels was shown to accompany the switch to
apoptosis in cells under persistent p53-activating stress
[55]. These results suggest that TIGAR levels must be
tightly regulated during a p53 response, and there is
now growing evidence that the deregulated expression
of TIGAR may contribute to cancer development.
Studies on the PFK-2/FBPase-2 family have already

revealed a role for these enzymes in tumor development.
All PFKFB mRNAs have been reported to be overex-
pressed in human lung cancers [86] and PFKFB3, which
has predominantly kinase activity, has been suggested to
promote tumorigenesis by enhancing PFK-1 activity and
glycolytic flux [87]. Moreover, a recent study found a
role for PFKFB3 in the proliferation of stalk endothelial
cells and vessel sprouting by influencing the formation
of filopodia/lamellipodia as well as cell migration. The
loss of PFKFB3 in endothelial cells resulted in vascular
defects in vivo, illustrating the importance of glycolysis
in regulating vessel branching [88]. On the other hand,
PFKFB4 plays an essential role in the survival of glioma
stem-like cells and loss of PFKFB4 induced apoptosis in
these cells [89]. Similarly in prostate cancer cells, loss
of PFKFB4 is detrimental to cell viability and resulted in a
decrease in F-2,6-P2 [65]. PFKFB4 shows predominantly
bisphosphatase activity, leading to the suggestion that
these cancer cells rely on PFKFB4 to dampen glycolytic
flux, promote the PPP and manage ROS accumulation -
very similar to the proposed action of TIGAR. However,
this response to PFKFB4 expression may be more compli-
cated than simply functioning to inhibit the PFK-1 step in
glycolysis. While the inhibition of PFK-1 activity through
glycosylation has been shown to promote the PPP and
growth of cancer cells [66], loss of FBP1, whose activity
directly opposes that of PFK-1 by converting F-1,6-P2
to F-6-P, has also been observed in human liver, colon,
gastric and breast cancers [90,91]. Interestingly, in this
context, FBP1 expression is associated not only with
decreased glycolysis and enhanced flux through the
TCA cycle, but also with decreased PPP flux, and thereby
an increase in ROS [92]. At first glance, these results seem
contradictory to the model proposed for TIGAR and
PFKFB4 expression, both of which also dampen glycolysis
but appear to promote the PPP. While it is difficult to
compare different models and tissue types in this way,
these results may reflect the functions of TIGAR that are
additional to the regulation of the PFK-1/FBP1 step of
glycolysis. Most clearly, the ability of TIGAR to bind to
and activate HK2 [73] could profoundly influence the
availability of glucose intermediates for use in pathways
such as the PPP. Consistently, HK2 was found to be
important in maintaining tumor proliferation in a mouse
model of KRas-driven lung cancer by promoting the
PPP [93].
Given the activities of TIGAR in lowering ROS and

promoting anabolic pathways, and the contribution of
these pathways to cancer development, it is perhaps
not surprising that overexpression of TIGAR has been
described in a number of tumor types. Increase in
TIGAR protein expression was observed in primary
colon cancer and associated metastases [79], as well as
in invasive breast cancer when compared to normal
tissue [94]. Glioblastoma have been found to show a
high expression of TIGAR compared to normal brain
tissue [71,95], and knockdown of TIGAR resulted in
radiosensitisation in glioma cells through an accumulation
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of ROS, leading to DNA damage and cellular senescence
[64]. Inhibition of transketolase-like 1, an enzyme involved
in the PPP, was able to reverse the beneficial effects of
TIGAR in these cells, further supporting the importance
of the PPP in this response [71].
The role of TIGAR in balancing redox state in cancer

cells has also been implicated in multiple myeloma cells,
where inhibition of the oncoprotein MUC1-C resulted
in a downregulation of TIGAR protein, lower levels of
NADPH and in turn, increased ROS and cell death [69].
Moreover, in nasopharyngeal cancer cells, inhibition of
c-Met, a tyrosine kinase whose overexpression has been
associated with poor patient survival and metastasis [96],
resulted in lower TIGAR expression, decreased NADPH
and increased cell death [68].
In an intestinal adenoma model where APC is deleted

in LGR5+ intestinal stem cells [97], mice deficient in
TIGAR showed a reduction in total tumor burden and
average tumor size in the small intestine compared to
wild-type mice. TIGAR is also highly expressed in these
adenomas when compared to the surrounding normal tis-
sue, supporting the importance of TIGAR in proliferating
tissue. A similar contribution of TIGAR to tumor progres-
sion was also observed in the colon, and importantly, the
decrease in tumor burden observed in TIGAR-deficient
mice correlated with a greater survival in these mice. In
vitro, the defective growth of TIGAR-null tumor crypts
could be rescued with antioxidants and nucleosides.
The PPP has been shown to be of particular importance
in redox homeostasis under hypoxic conditions, and
TIGAR-deficient crypts were found to be more sensitive
to hypoxia than wild-type crypts [79].
While the ability of TIGAR to promote cancer devel-

opment might appear counterintuitive to its function in
the p53 tumor suppressor pathway, it is important to note
that in tumor cells overexpressing TIGAR, expression
of TIGAR is uncoupled from p53 expression. Indeed,
closer analysis in tumor cell lines showed that the basal
expression of TIGAR is not dependent on the maintenance
of wild-type p53 [79]. The ability of a p53-target protein to
become oncogenic when no longer properly controlled has
also been described for other mediators of the p53 survival
response, such as carnitine palmitoyltransferase 1C [98].
Understanding how these genes are regulated will be
critical in determining their role in cancer development.

The regulation of TIGAR
Initial studies identified TIGAR as a p53-responsive gene
[51,54,55,63,71,81]. However, p53-independent expression
of TIGAR has also been seen in several human cancer cell
lines [79], and its expression in human breast cancer was
inversely correlated to the expression of p53 [94]. Little
is known about p53-independent regulation of TIGAR,
which could be transcriptional, translational, through
the control of protein stability or through other post-
translational modifications of the protein. Other members
of the p53 family, p63 and p73, can activate promoters
of several p53 target genes such as p21 and Bax [99,100],
and could, therefore, also be capable of regulating TIGAR
expression. While the TAp73 isoform has recently been
found to be able to increase PPP activity through direct
activation of G6PDH to support tumor cell proliferation
[101], it is possible that the regulation of TIGAR also
contributes to this response. In addition, mutant forms
of p53 often display an oncogenic gain of function that
can also involve modulation of tumor cell metabolism.
While mutant p53s generally lose the ability to activate
wild-type p53 target genes, they retain the ability to
control transcription, such as the activation of genes
involved in the mevalonate pathway in breast cancer cells
[102]. As TIGAR expression is preserved in tumor cells
that carry mutations in p53 [79], it is possible that some
mutant p53s retain the ability to influence the expression
of TIGAR and so help to promote tumorigenesis. Another
transcription factor, SP1, has been found to regulate
the basal level of TIGAR expression in liver cancer cell
lines [103]. While PFKFB3 expression can be induced by
HIF-1 [76-78], TIGAR expression levels are not controlled
by hypoxia. However, as discussed above, the activity of
TIGAR is clearly modulated under conditions of low
oxygen. Moreover, the loss of FBP1 observed in a number
of human cancers and breast cancer cell lines was found
to be due to promoter DNA methylation, demonstrating
that epigenetic regulation also plays an important role
in governing metabolism in cancer [90-92]. There is
still much to be learnt about how TIGAR expression
and activity are controlled under normal as well as
stressed conditions.

Conclusions
As we gain further insight into the roles of TIGAR
under normal and disease conditions, we can begin to
make predictions about the benefit of modulating TIGAR
for therapeutic intervention. In vivo studies have shown
that the expression of TIGAR appears to be beneficial in
certain circumstances, as seen in allowing for the recovery
of intestinal epithelium following damage-induced ablation,
but can also be detrimental, for example in promoting
cardiac damage following ischaemic stress.
The situation seems somewhat clearer in cancer devel-

opment, where overexpression of TIGAR is found in
several tumor types and the deletion of TIGAR corresponds
to a delay in cancer development. Indeed, using condition-
ally expressed TIGAR alleles, TIGAR loss was beneficial
subsequent to tumor establishment, providing some indi-
cation that TIGAR may be a useful therapeutic target
[71,79,94]. While these effects of TIGAR loss are consistent
with the observation that inhibition of other antioxidants
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can lead to excessive ROS and cell death in several cancer
types [20-22], further investigation into TIGAR’s activity,
regulation, localisation and possible post-translational
modifications are required to fully understand the role of
TIGAR in the control of normal and disease pathologies.
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