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Abstract

Calorie restriction (CR) is one of the most potent broadly acting dietary interventions for inducing weight loss and
for inhibiting cancer in experimental models. Translation of the mechanistic lessons learned from research on CR to
cancer prevention strategies in human beings is important given the high prevalence of excess energy intake,
obesity, and metabolic syndrome in many parts of the world and the established links between obesity-associated
metabolic perturbations and increased risk or progression of many types of cancer. This review synthesizes findings
on the biological mechanisms underlying many of the anticancer effects of CR, with emphasis on the impact of CR
on growth factor signaling pathways, inflammation, cellular and systemic energy homeostasis pathways, vascular
perturbations, and the tumor microenvironment. These CR-responsive pathways and processes represent targets for

translating CR research into effective cancer prevention strategies in human beings.
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Introduction

Calorie restriction (CR), a dietary regimen in which sub-
jects (typically test animals) receive a reduced energy
diet (typically, a 20 to 40% reduction in total energy in-
take relative to an unrestricted comparison group), is
one of the most potent and broadly acting dietary inter-
ventions for preventing or reversing weight gain and
inhibiting cancer in experimental tumor models [1]. Re-
cent reports of decreased risk of diabetes, neurological
degeneration, and cancer in response to CR in rhesus
monkeys [2,3], and observations that CR decreases in-
flammatory and endocrine markers associated with in-
creased breast cancer risk in women [4,5], suggest that
the beneficial effects of CR on metabolism and chronic
disease risk observed in rodent models may extend to
human beings.

Observational epidemiologic studies provide additional
evidence that CR exerts beneficial effects on longevity
and cancer risk in human beings [1]. For example, in-
habitants of Okinawa, Japan, who until recently had con-
sumed significantly fewer calories than residents of the
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main Japanese islands, have always had lower death rates
from cancer and other chronic diseases than inhabitants
of the Japanese mainland [6]. In addition, patients with
early-onset anorexia nervosa, and hence periods of en-
ergy restriction, have reduced risk of breast cancer [7].
Furthermore, surveillance data from some populations
exposed to varying degrees of energy restriction during
World War II are also consistent with the hypothesis
that CR decreases cancer risk. For example, Norwegian
women showed reduced breast cancer risk later in life in
association with acute (<1 year) energy restriction (=50%
reduction in calorie intake without significant changes in
diet quality) [8]. However, the confounding effects of se-
vere physical and psychosocial stress, malnutrition, in-
fection, and other factors associated with war conditions
make many of these studies a challenge to interpret.
Populations with more severe restriction than experi-
enced in Norway, such as survivors of the 1944 Dutch
‘Hunger Winter, the Jewish Holocaust, and the Siege of
Leningrad, actually displayed higher breast cancer rates
[9-11], indicating a threshold beyond which undernut-
rition (especially when combined with other stressors)
might be cancer promoting. This is particularly true for
those born around the time of the severe deprivation
and stress, suggesting an important perinatal window of
susceptibility to metabolic reprogramming [12].
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These stressful conditions are in contrast with the
controlled conditions characteristic of most CR studies
in animal models that consistently show anticancer ef-
fects. Calorie restriction regimens are often referred to
as ‘CR with optimal nutrition’ or ‘undernutrition without
malnutrition, and CR experiments typically involve 20 to
40% reductions in total energy relative to ad libitum-fed
controls, but with adequate nutrition and a controlled
physical environment [1]. In rodent models, CR regi-
mens administered throughout life are generally more
effective against cancer than CR regimens initiated in
adulthood, although both early-onset and adult-onset
CR, relative to control diet regimens, are protective
against a variety of cancer types [1]. In the two published
rhesus monkey studies to date, there was a consistent
anticancer effect of CR when begun in young adults
[2,3]. However, in the latest study by Mattison and col-
leagues [3], there was no anticancer effect of CR when
begun in older adults, and there was no effect of CR, re-
gardless of age of onset, on overall survival. This is in
contrast with the earlier report by Weindruch and col-
leagues [2] showing both anti-aging and anticancer ef-
fects of CR. Several differences between the studies may
account for their differential findings. The Weindruch
group, relative to the Mattison group, used a more puri-
fied, energy-dense diet that was =~30% sucrose (versus
4% sucrose in the Mattison study). Thus the Weindruch
group’s controls, relative to the Mattison group’s con-
trols, were more obese and less healthy, and hence their
CR monkeys had a greater difference in weight and
metabolic parameters. The diets fed to the monkeys in
the Mattison study also contained fish oil, which prob-
ably contributed further to their monkeys being health-
ier and more metabolically similar regardless of caloric
intake. Differences in genetics may also have contributed
to the observed differences, as although both studies
used rhesus monkeys, the monkeys originated from dif-
ferent countries. Nonetheless, there is evidence that CR
can prevent cancer in monkeys, with the magnitude of the
effect dependent on several factors, including age of onset,
nutritional quality of the diet, and genetic susceptibility.

Several clinical trials funded by the National Institute
of Aging are currently being conducted to address the
question of whether the observed health benefits of CR
in rodents and nonhuman primates translate to human
beings. One of these trials, the Comprehensive Assess-
ment of Long-Term Effects of Reducing Intake of Energy
(CALERIE) Study, is evaluating the effects of a 2-year
CR regimen (25% less energy than controls) in healthy,
nonobese individuals. Preliminary reports on CALERIE
indicate that many of the same metabolic and endocrine
changes observed in rodents and monkeys are also oc-
curring in human beings in response to CR [13,14].
These findings are consistent with recent studies in
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women at high risk for breast cancer showing that
inflammatory and growth factor signaling pathways are
reduced by total CR or 2 days/week of restricted carbo-
hydrate calories [4,5]. The observed metabolic effects of
2-days/week of restricted carbohydrate calories are of
particular interest, since it is probably easier and more
sustainable for most people to restrict a single macronu-
trient, such as carbohydrates, periodically than to restrict
total energy chronically.

In this review, we discuss possible mechanisms under-
lying the anticancer effects of CR, with emphasis on CR-
associated changes in growth signaling, inflammation,
and angiogenesis, as well as emerging evidence sugges-
ting that autophagy and the sirtuin pathway may also
play roles in the effects of CR on tumor development
and progression. As summarized in Figure 1, we spe-
cifically describe the dysregulation of growth signals
(including insulin, IGF-1, adipokines, and their down-
stream signaling pathways), inflammatory cytokines and
cellular crosstalk, and vascular integrity factors, in re-
sponse to CR, and suggest that these multifactorial
CR-induced changes combine to suppress tumor devel-
opment or progression. Components of these interre-
lated pathways offer possible mechanism-based targets
for the prevention and control of cancers, particularly
the estimated 20% [15] of human cancers related to,
or caused by, excess body weight and the metabolic
syndrome.

Calorie restriction impacts growth signals

Insulin, insulin-like growth factor (IGF)-1, and glucose

The peptide hormone insulin is produced by beta cells
in the pancreas and released in response to hypergly-
cemia, which is associated with insulin resistance, aber-
rant glucose metabolism, chronic inflammation, and the
production of other metabolic hormones, such as IGF-1,
leptin, and adiponectin [16]. Clinical and epidemiologic
evidence suggests that elevated levels of circulating insu-
lin or the cleavage product of proinsulin (C-peptide) are
associated with increased risk or progression of cancers
of the breast (pre- and postmenopausal), endometrium,
colon, kidney, and pancreas [16,17]. High circulating
levels of insulin also upregulate hepatic synthesis of IGF-
1 critical to growth and development of many tissues,
particularly during the prenatal period [16,18]. In the
circulation, IGF-1 is typically bound to IGF-binding pro-
teins (IGFBPs) that regulate the amount of free IGF-1
bioavailable to elicit growth or survival signaling [16,18].
An elevated level of circulating IGF-1 is an established
risk factor for many cancer types [16-20].

The decrease in insulin and IGF-1 levels in response
to CR is due, at least in part, to reduced glucose levels
[18]. In the hyperinsulinemic state (as commonly oc-
curs with obesity), higher insulin levels in the portal
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Figure 1 Calorie restriction and cancer: overview of mechanisms. Chronic exposure to a calorie restriction regimen results in reduced
circulating levels of several hormones, growth factors and cytokines, leading to decreased growth factor signaling, fewer vascular perturbations,
and decreased inflammation. Together, these responses to calorie restriction result in decreased cancer risk and progression. An arrow preceding
text denotes a directional effect (eg, activity or concentration). Abbreviations: IGF-1, insulin-like growth factor-1; ApN, adiponectin; PAI-1,
plasminogen activator inhibitor-1; tPA, tissue-type plasminogen activator; uPA, urokinase-type plasminogen activator; VEGF, vascular endothelial
growth factor; PI3K, phosphoinositide 3-kinase; mTOR, mammalian targt of rapamycin; NF-kB, nuclear factor kB; COX-2, cyclooxygenase-2.
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circulation in response to hyperglycemia upregulate the
growth hormone receptor (GHR) and augment GHR sig-
naling, increasing hepatic IGF-1 production. Insulin re-
sistance and hyperinsulinemia are also associated with
downregulation of IGFBPs, increasing the levels of bio-
available IGF-1. In contrast, the enhanced insulin sen-
sitivity and normalized glucose levels in response to a
CR regimen, relative to a control or diet-induced obesity
(DIO) regimen, results in lowered serum insulin and
IGF-1, and increased IGFBP production, particularly
IGFBP1 and 3 (and hence low levels of bioavailable
IGF-1). The CR-induced reduction in glucose may also
have direct anticancer effects. In cancer cells, mitochon-
drial metabolism of glucose is reprogrammed to meet
the demands of macromolecular synthesis required for
cellular proliferation. This metabolic switch of glucose
metabolism from oxidative phosphorylation to oxidative
glycolysis (first described by Otto Warburg in 1924) is
now understood to be necessary to supply sufficient nu-
cleotides, lipids, and proteins for daughter cell produc-
tion [21]. Cancer cells do this, however, at the expense
of substrate inflexibility relative to normal cells, as the
increased proliferation rate associated with most cancer
cells can only be sustained by a constant supply of the
necessary building blocks derived from the flux of glu-
cose carbons through glycolysis. Thus, it is possible that
precancerous or cancer cells undergoing this metabolic
reprogram, and hence developing a glucose addiction,
may have heightened sensitivity to reductions in glucose
levels, as occurs with CR.

Insulin signals through the insulin receptor (IR), of
which there are two isoforms, IR-A and IR-B, formed by
the absence or presence of exon 11, respectively [16,18].
IR-A expression has been demonstrated in fetal cells and
many tumor cells, and signaling through IR-A results in
more mitogenic effects than IR-B signaling, which acti-
vates the metabolic signaling pathway. Hyperinsulinemia,

therefore, can activate signaling pathways that lead to both
metabolic and mitogenic effects. IGF-1 primarily signals
through the IGF-IR, and mediates mitogenic effects. Cells
that express the IR and IGF-IR can also express hybrid re-
ceptors, made of the a and B subunit of an IR (IR-A or IR-
B) bound to the a and 3 subunit of the IGF-IR. Insulin has
negligible affinity for either configuration, while IGF-1 can
bind efficiently to either of these hybrid receptors. In-
creased expression of IR-A in tumors therefore allows for
the increased formation of IGF-IR/IR-A hybrid receptors
in tumors, facilitating mitogenic signaling by IGF-1
through the hybrid receptor or insulin. Taken together, it
is clear that either hyperinsulinemia or increased IGF-1
(or both) can augment tumor growth by signaling through
these receptors.

The phosphatidylinositol-3 kinase (PI3K)/Akt pathway,
downstream of both the insulin receptor and IGF-IR, is
one of the most commonly activated pathways in epithe-
lial cancers [21]. This pathway integrates intracellular
and environmental cues, such as growth factor con-
centrations and nutrient availability, to regulate cellular
survival, proliferation, protein translation, and metabol-
ism. Akt regulates the mammalian target of rapamycin
(mTOR) [22], which regulates cell growth, cell prolifera-
tion, and survival through downstream mediators. In-
creased activation of mTOR is common in tumors and
many normal tissues from obese or diabetic mice, while
CR decreases mTOR signaling in these same tumors and
normal tissues [23]. Moreover, mTOR activation is
inhibited by increased AMP-activated kinase (AMPK)
under low nutrient conditions [24]. Specific mTOR in-
hibitors block the tumor-enhancing effects of obesity in
mouse models [25,26].

Adiponectin, leptin, and the leptin: adiponectin ratio
Adiponectin is a peptide hormone primarily secreted
from visceral white adipose tissue. In contrast to leptin
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and other adipokines, circulating levels of adiponectin
negatively correlate with adiposity, and are thus in-
creased by CR and decreased by obesity [27]. Adipo-
nectin functions to counter obesity-related metabolic
perturbations, such as insulin resistance and leptin re-
sistance, that impact glucose and fatty acid metabolism,
alter insulin responses, and increase production of in-
flammatory cytokines [27]. Thus, possible mechanisms
through which adiponectin exerts anticancer effects may
include increasing insulin sensitivity and decreasing in-
sulin/IGF-1 and mTOR signaling via activation of
AMPK [28]. Adiponectin also reduces proinflammatory
cytokine expression via inhibition of the nuclear factor
K-light-chain-enhancer of activated B-cells (NF-kB)
[28,29].

Leptin is a peptide hormone produced by white adi-
pose tissue, and the leptin receptor is a member of the
class I cytokine receptor family that signals through the
Janus kinase and signal transducer activator of trans-
cription (JAK/STAT) pathway commonly dysregulated
in inflammatory conditions and many cancers [30,31].
Circulating leptin levels positively correlate with adipose
stores and nutritional status, and function as an energy
sensor to signal the brain to reduce appetite. Leptin has
direct effects on peripheral tissues, indirect effects on
neuroendocrine regulators of appetite and energy expen-
diture in the hypothalamus, and impacts carcinogenesis,
angiogenesis, immune responses, cytokine production,
and other biological processes [31]. In the obese state,
adipose tissue overproduces leptin, and the brain no lon-
ger responds to the signal, resulting in leptin resistance.
Insulin, glucocorticoids, tumor necrosis factor-a (TNF-a),
and estrogens all stimulate leptin release [31]. Calorie
restriction consistently and robustly decreases systemic
leptin levels in a manner dependent on the extent of the
adiposity loss [1].

In vitro, animal, and epidemiologic evidence linking
adiponectin [32-36] or leptin [37-39] individually to can-
cer risk is mixed. Intermittent CR suppresses murine
mammary tumor incidence in association with decreased
leptin-to-adiponectin ratio [32]. Associations between
the leptin-to-adiponectin ratio and the metabolic syn-
drome [40-42] and some cancers [43-45] have been
reported, but further characterization of these links is
needed.

Calorie restriction decreases chronic inflammation

Chronic inflammation is characterized by increased cir-
culating free fatty acids, cytokines, and chemokines that
attract immune cells (such as macrophages that also
produce inflammatory mediators) into the local micro-
environment [46-48]. The inflammatory cascade is fur-
ther amplified by the release of inflammatory cytokines,
such as interleukin (IL)-1p, IL-6, TNF-a, and monocyte
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chemoattractant protein-1, primarily from macrophages,
into the local and systemic circulation. Adipocytes can
enlarge past the point of effective oxygen diffusion,
which results in hypoxia and eventually necrosis. Free
fatty acids escape the engorged or necrotic adipocytes
and deposit in other tissues, and this in turn promotes
insulin resistance, diabetes (through downregulation of
insulin receptors and glucose transporters), hepatic
steatosis, and pancreatic steatosis, and also activates sig-
naling molecules involved in epithelial carcinogenesis,
such as NF-kB and cyclooxygenase (COX)-2 [49]. The
transcription factor NF-«B is activated in response to
bacterial and viral stimuli, growth factors, and inflamma-
tory molecules (for example, TNF-«, IL-6, and IL-1P),
and is responsible for inducing gene expression associ-
ated with cell proliferation, apoptosis, inflammation, me-
tastasis, and angiogenesis. Activation of NF-kB is a
common characteristic of many tumors and is associated
with insulin resistance and elevated circulating levels of
leptin, insulin, or IGF-1 [46,50,51].

A connection between chronic inflammation and can-
cer development was observed 150 years ago when Ru-
dolph Virchow noted an abundance of leukocytes in
neoplastic tissue [52]. Inflammation is now considered a
hallmark of cancer, and evidence is accumulating that
chronic, ‘smoldering’ inflammation is associated with
increased cancer risk [53-55]. Indeed, several tissue-
specific inflammatory lesions are established neoplastic
precursors for invasive cancer, including inflammatory
bowel disease for colon cancer, pancreatitis for pancre-
atic cancer, dermatitis for certain forms of skin cancer,
and gastritis for gastric cancer [56,57]. Tumor and
preneoplastic microenvironments are composed of mix-
tures of cell types including epithelial cells, fibroblasts,
mast cells, and cells of the innate and adaptive immune
system [58]. As discussed previously, macrophages,
which are activated in the obese state, infiltrate tumors
and amplify the inflammatory tumor microenvironment,
often through NF-kB-dependent production of cytokines
and angiogenic factors [58]. COX-2 is another important
cancer-related inflammatory mediator that is upregu-
lated in most tumors and catalyzes the synthesis of the
potent inflammatory lipid metabolite, prostaglandin E,.
COX-2 expression, an indicator of poor prognosis in
many cancer types, is increased in response to obesity
[59].

Calorie restriction can prevent much of the inflamma-
tion associated with preneoplasia or neoplasia [46,60-62].
Specifically, CR decreases the number of tumor-infiltrat-
ing macrophages, levels of circulating and tissue cytokines,
and NF-kB signaling and COX-2 expression in many
tissues and tumor types [46,61,62]. Thus evidence is accu-
mulating that the anti-inflammatory effects of CR contrib-
ute significantly to its cancer preventive effects [1,46].
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Calorie restriction abrogates vascular perturbations
Imbalances in the production or interactions of several
factors influence key functions of the endothelium, in-
cluding its roles in regulating angiogenesis, hemostasis,
vascular density, inflammation, and vascular wall integ-
rity. One such factor is PAI-1, a serine protease inhibitor
produced by endothelial cells, stromal cells, and adi-
pocytes in visceral white adipose tissue [63]. PAI-1,
through its inhibition of urokinase-type and tissue-type
plasminogen activators, regulates fibrinolysis and integ-
rity of the extracellular matrix [64]. Increased circulating
PAI-1 levels, frequently found in obese subjects, are as-
sociated with increased risk of atherogenesis and cardio-
vascular disease, diabetes, and several cancers [63-66].
PAI-1 is also involved in angiogenesis and thus may con-
tribute to obesity-driven tumor cell growth, invasion,
and metastasis [66]. Circulating levels of PAI-1 are con-
sistently decreased in response to CR [1], although the
mechanistic link between PAI-1 and cancer requires fur-
ther study.

Another important mediator of vascular integrity is
the heparin-binding glycoprotein vascular endothelial
growth factor (VEGF) produced by adipocytes and
tumor cells. VEGF has mitogenic, angiogenic, and vascu-
lar permeability-enhancing activities specific for endo-
thelial cells [67]. The need for nutrients and oxygen
triggers tumor cells to produce VEGE, which leads to the
formation of new blood vessels (angiogenesis) to nourish
the rapidly growing tumor. VEGF may also facilitate the
metastatic spread of tumors cells [68]. Adipocytes com-
municate with endothelial cells by producing a variety of
pro-angiogenic and vascular permeability-enhancing fac-
tors, including VEGF and PAI-1 [69]. In the obese,
nontumor setting, these factors stimulate neovascula-
rization in support of the expanding fat mass [69]. Cir-
culating levels of VEGF are increased in obese, relative
to lean, human beings and animals, and increased tu-
moral expression of VEGF is associated with poor prog-
nosis in several obesity-related cancers [70-73]. Data to
date for several experimental tumor models [71-73] sug-
gest that CR decreases systemic and tissue VEGF and
has anti-angiogenic effects.

Emerging mechanisms underlying the anticancer
effects of calorie restriction

Sirtuins

The sirtuin family of proteins has been implicated in the
regulation of endocrine signaling, stress-induced apop-
tosis, and the metabolic changes associated with energy
balance modulation and aging [74-76]. Sirtuins were ori-
ginally studied in yeast and nematodes, where CR in-
creases lifespan in association with the levels and activity
of the Sir2 protein [77-79]. The levels of Sir2, or its
mammalian homolog SIRT1, rise in response to CR
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[75-79]. SIRT1 is an NAD-dependent deacetylase that
inhibits stress-induced apoptotic cell death, and may
modulate IGF-1, adiponectin, and insulin production,
and insulin sensitivity, in different tissues [79-81].

The specific roles of sirtuins in cancer development or
progression are not yet clear. SIRT1 is upregulated in
several tumor types and can inhibit apoptosis and
downregulate the expression of tumor suppressor genes
to enhance survival of epithelial cancer cells [82-85]. In
addition, the SIRT1 activator SRT1720 promotes tumor
cell migration and lung metastases in a murine breast
cancer model [86]. In contrast, there is also evidence
that SIRT1 can act to suppress polyp formation in the
APCM™ intestinal tumor model [87]. Additionally, in
preclinical studies the phytochemical resveratrol acti-
vates SIRT1 and reduces cancer development in several
models [88]. SIRT1-overexpression did not influence the
anticancer effects of an every-other-day fasting regimen
(a variation of CR) in a p53-deficient mouse model of
cancer, suggesting that SIRT1 may have a limited role in
the effects of CR on cancer [89]. Given the conflicting
data to date regarding the tumor-enhancing, versus in-
hibitory, effects of SIRT1 activation, and the apparently
limited role of SIRT1 in the response to CR, it remains
unclear whether SIRT1 or other sirtuins represent mech-
anistic targets for cancer prevention.

Autophagy

Autophagy is a cellular degradation pathway involved in
the clearance of damaged or unnecessary proteins and
organelles. It also provides an alternative source of en-
ergy and substrates during periods of restricted dietary
intake (such as CR) or metabolic stress to enhance sur-
vival. In response to a 30% CR regimen (relative to an
ad libitum-fed control diet), fasting plasma glucose
levels and insulin secretion are reduced (and insulin sen-
sitivity is increased), and glucagon is released from the
alpha cells of the pancreas, resulting in increased au-
tophagy in the liver, beta cells of the pancreas, and skel-
etal muscle [90,91]. One of the proposed mechanisms of
CR is that under conditions of nutrient limitation, there
is a shift in metabolic investment from cell replication
and growth to maintenance, to ensure extended survival
[92]. This tightly regulated process is driven by a group
of autophagy-related proteins, and is suppressed by the
conserved nutrient sensor TOR [93]. CR regulates TOR
complex 1 and, to a lesser extent TOR complex 2, in
many species, including flies, worms, yeast, and mam-
mals. TOR complex 1 signaling regulates protein transla-
tion and many cellular processes, including metabolism
and autophagy [93]. In addition, suppression of nutrient-
activated TOR signaling is sufficient to trigger an energy
stress response that is coordinated by AMPK, and this
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metabolic program blunts the growth responses to nutri-
ent availability and promotes autophagy [94].

Several longevity-promoting regimens, including in-
hibition of TOR with rapamycin, resveratrol, or the nat-
ural polyamine spermidine, may require autophagy for
their effects [95]. Autophagy activation is essential for
clearing cellular damage and disease prevention in nor-
mal cells, and tumor cells also utilize autophagy to
maintain a favorable metabolic state for daughter cell
production, especially under limiting nutrient conditions
[96]. However, little is known about what role autophagy
plays in CR-mediated effects on tumor development or
progression.

Calorie restriction mimetics

The identification and development of natural or syn-
thetic agents that mimic some of the protective effects
of CR may facilitate new strategies for cancer preven-
tion. Given how difficult it is for many people to adopt a
low-calorie diet for an extended period, the identifica-
tion of drugs or other agents that could either comple-
ment or even reproduce the anticancer effects of CR
without drastic changes in diet and lifestyle is a goal
for many pharmaceutical companies. Numerous studies
have used microarray analyses to profile the molecular
targets responding to CR and other dietary energy bal-
ance modulations [97-101]. Most of these studies were
focused on understanding CR effects related to aging,
and they revealed that the extent to which CR modulates
the transcriptome is species-specific, tissue-specific, and
dependent on the duration and intensity of CR. None-
theless, some emerging patterns from these studies sug-
gest that transcripts involved in inflammation, growth
factor signaling (particularly related to the insulin and
IGE-1 pathways), oxidative stress, and nutrient metabol-
ism are commonly altered by CR. Application of the
emerging field of metabolomics to this question should
accelerate the identification of additional targets.

Genetic induction of the Sir2/SIRT1 family of NAD-
dependent deacetylases mimics some of the effects of
CR [75,77,78,87], although the role of SIRT1 in the anti-
cancer effects of CR is unclear and may be minimal [89].
Sirtuin modulators, including resveratrol and its analogs,
and pharmacologic modulators of SIRT1 ([82], exert
some anticancer activity, although much of this work
has been limited to in vitro systems and awaits verifica-
tion in vivo.

The IGF-1 and Akt/mTOR pathways, in addition to
the sirtuin pathway, have emerged as potential key medi-
ators of CR’s anticancer effects, and are the most prom-
ising initial targets for possible CR mimetics. Agents or
interventions that safely reduce IGF-1, or inhibit one or
more components of the signaling pathways downstream
of IGF-1 and other growth factors (including Akt and
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mTOR) without requiring drastic dietary changes, may
provide an effective physiological or pharmacological
mimetic of those effects. The hope is that these agents
or interventions could be readily adopted by a large pro-
portion of the population, particularly those unable to
lose weight and at high risk of cancer or other chronic
diseases associated with obesity.

As recently reviewed [16,102], antireceptor antibodies,
small-molecule receptor kinase inhibitors, and (to a
lesser extent) anti-IGF ligand antibodies are being devel-
oped to target the IR or IGF-1 receptor, and several
promising agents from each of these classes have ad-
vanced to clinical trials. The antireceptor antibodies have
been the subject of the most intense translational re-
search activity, extending to phase 3 trials, while the
other classes are currently in phase 1 or phase 2 trials.
The various antireceptor antibodies that have been de-
veloped were designed to avoid IR inhibition (blocking
IR would be likely to have significant adverse effects),
and this is generally being accomplished. Each targets
ligand binding to the IGF-IR, and preliminary evidence
suggests that the effects extend to hybrid receptors. Des-
pite the lack of interference with insulin binding, the use
of these antibodies causes hyperglycemia and hyperinsu-
linemia, and can also lead to increased levels of serum
IGF-1 in compensation for the reduced IGF-IR signaling.
This can contribute to insulin resistance in patients re-
ceiving these antibodies, and these untoward effects,
along with generally disappointing trial results to date, is
limiting the pace of development of these agents [102].

Although the initial development of small-molecule
tyrosine kinase inhibitors involved attempts to achieve
IGF-IR specificity, the newer agents tend to partially in-
hibit several members of the insulin and IGF-1 receptor
family, which may limit side effects and provide a thera-
peutic advantage of more specific inhibitors. Early clin-
ical experience suggests that these agents are safer than
was originally anticipated, possibly because the drug
concentrations that are achieved are fairly low in muscle,
which is a major metabolic regulator, perhaps account-
ing for a modest rather than a severe effect of these kin-
ase inhibitors on metabolic perturbations. Nevertheless,
insulin levels are generally increased in patients treated
with these kinase inhibitors, possibly limiting their effi-
cacy and the pace of their development [16].

In addition to pharmacological agents targeting these
receptors or ligands, including emerging work on
microRNA-based approaches [103], a wide variety of na-
tural agents with demonstrated cancer chemopreventive
or chemotherapeutic activity have recently been reported
to target components of the insulin/IGF-1 pathway
[104]. These agents, which probably exert only modest
inhibitory effects on insulin/IGF receptor activity, may
provide a promising and safe approach, especially if
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effective combinations can be identified, to breaking the
obesity-cancer link

Pharmacological mTOR inhibitors have emerged as
lead candidates for CR mimetics. Rapamycin treatment
extends lifespan and delays cancer in mice, providing
additional support for mTOR as a target for mimicking
the effects of CR [105]. We have shown that rapamycin
or its analog, RADOO1 (everolimus), can offset the
obesity-associated increased growth of mammary or
pancreatic tumors [25,62]. Rapamycin is a potent inhibi-
tor of the mTOR complex 1, but chronic rapamycin ex-
posure has been linked in some studies to disruption of
mTOR complex 2 signaling, resulting in impaired glu-
cose tolerance and insulin action [106]. Thus while
inhibiting mTOR complex 1 appears to be a good strat-
egy for mimicking many of the anticancer effects of CR,
the search for agents that can do so without disrupting
mTOR complex 2 signaling is ongoing.

An mTOR-inhibiting drug with great promise as a CR
mimetic that overcomes the concerns about glucose in-
tolerance associated with rapamycin is metformin, a bi-
guanide commonly used to treat type 2 diabetes [107].
Metformin inhibits gluconeogenesis through indirect acti-
vation of AMPK in the liver and possibly cancer cells, and
may also exert direct effects on AMPK in cancer cells
[107]. Administration of metformin suppresses tumor de-
velopment or growth in multiple experimental models, in-
cluding colon, mammary, and hematopoietic cancer
models [107]. Epidemiological studies have suggested that
type 2 diabetic patients treated with metformin have a
lower risk of developing from or dying from cancer, rela-
tive to diabetic patients receiving sulfonylurea, insulin, or
other therapies [108-110]. A randomized trial is now un-
derway to evaluate the effect of metformin on breast can-
cer recurrence [111]. Phenformin, another biguanide that
has been abandoned for diabetes therapy due to its tox-
icity from lactic acidosis is a more potent AMPK inhibitor
than metformin and may also have some potential as a CR
mimetic at lower, nontoxic doses [107].

An emerging issue in the area of mTOR inhibitors as
CR mimetics is that of the relative effects of nature ver-
sus nurture, that is, the contribution of systemic factors
(which has been the focus of this review) in the context
of cell autonomous effects. The observations of Kalaany
and Sabatini [112] that cancer cells with constitutively
activated PI3K mutations are proliferative in vitro in the
absence of insulin or IGF-1 and form CR-resistant tu-
mors in vivo illustrate this issue. We also found that
constitutive activation of mTOR in MMTV-Wnt-1 mam-
mary tumor cells blocked the anticancer effects of CR
[26]. These findings suggest that cell autonomous alter-
ations, such as activating mutations of PI3K or down-
stream mTOR pathway components, may influence the
response of cells to CR or CR mimetics.
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Another emerging issue is that, in addition to im-
pacting the growth and survival of aberrant cells, CR
and mTOR inhibition may also affect the stem cell com-
partment and enhance maintenance or repair of tissues.
Yilmaz and colleagues [113] showed that CR, through its
inhibitory effects of mTOR signaling in Paneth cells (im-
mune-related support cells in the stem cell niche) adja-
cent to intestinal stem cells, preserves and even enriches
intestinal stem cells. The augmenting effects of CR (via
Paneth cells) on intestinal stem cell self-renewal can be
mimicked by rapamycin. Cerletti ez al. [114] similarly
found that CR enriches skeletal-muscle stem cells and
increases their regenerative potential. In addition, we
showed that mammary tumors highly enriched in breast
cancer stem cells have heightened sensitivity to the anti-
cancer effects of CR [115]. Specifically M-Wnt cells,
cloned from a spontaneous mammary tumor from a
MMTV-Wnt-1 transgenic mouse, display a mesenchy-
mal morphology, stably express stem cell markers, and
rapidly generate claudin-low mammary tumors when
orthotopically injected into syngeneic C57BL/6 mice.
Calorie reduction almost completely ablates M-Wnt
tumor growth relative to tumors induced by E-Wnt
cells, also cloned from a MMTV-Wnt-1 tumor but with
basal-like epithelial morphology and low expression of
stem cell markers. Furthermore, CR promotes a mesen-
chymal-to-epithelial transition in the mammary gland by
increasing the expression of the epithelial markers, such
as E-cadherin, and decreasing the expression of mesen-
chymal markers, such as N-cadherin and fibronectin
[115]. Taken together, these studies suggest an important
role for the microenvironment in the response of stem
cells (including cancer stem cells) to CR or CR mimetics
targeting the mTOR pathway, and this will no doubt be
an important and exciting research area in the coming
years.

Review

As summarized in Figure 1, this review considers lessons
learned from CR and cancer research to discuss promis-
ing molecular targets for cancer prevention, particularly
for breaking the link between obesity and cancer. Poten-
tial targets include components of energy-responsive
growth factor and adipokine signaling pathways, inflam-
matory pathways, vascular regulators, autophagy regula-
tors, and the sirtuin pathway. Clearly, no single pathway
accounts for all of the anticancer effects of CR. As with
most chronic disease intervention strategies, combin-
ation approaches involving lifestyle (including diet and
physical activity) and pharmacological interventions that
target multiple pathways (and that maximize efficacy
and minimize adverse effects) are likely to be most
successful for preventing cancer. Future studies aimed
at further elucidating the mechanisms underlying the
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anticancer effects of CR, and that exploit this mechanis-
tic information to target CR-responsive pathways will fa-
cilitate the translation of CR research into effective
cancer prevention strategies in human beings.

Conclusions

In this review we discussed possible mechanisms under-
lying the anticancer effects of CR, with emphasis on CR-
associated changes in growth factor signaling, inflamma-
tion, and angiogenesis, as well as emerging evidence
suggesting that autophagy and the sirtuin pathway may
also play roles in the effects of CR on tumor deve-
lopment and progression. Several natural or synthetic
agents have been shown to mimic some of the protective
effects of CR and may thus represent new strategies for
cancer prevention.
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